ﻻ يوجد ملخص باللغة العربية
Let $X$ be an $n$-dimensional smooth Fano complex variety of Picard number one. Assume that the VMRT at a general point of $X$ is smooth irreducible and non-degenerate (which holds if $X$ is covered by lines with index $ >(n+2)/2$). It is proven that $dim mathfrak{aut}(X) > n(n+1)/2$ if and only if $X$ is isomorphic to $mathbb{P}^n, mathbb{Q}^n$ or ${rm Gr}(2,5)$. Furthermore, the equality $dim mathfrak{aut}(X) = n(n+1)/2$ holds only when $X$ is isomorphic to the 6-dimensional Lagrangian Grassmannian ${rm Lag}(6)$ or a general hyperplane section of ${rm Gr}(2,5)$.
We introduce the notion of intrinsic Grassmannians which generalizes the well known weighted Grassmannians. An intrinsic Grassmannian is a normal projective variety whose Cox ring is defined by the Plucker ideal $I_{d,n}$ of the Grassmannian $mathrm{
We classify rank two vector bundles on a del Pezzo threefold $X$ of Picard rank one whose projectivizations are weak Fano. We also investigate the moduli spaces of such vector bundles when $X$ is of degree five, especially whether it is smooth, irreducible, or fine.
Let $M$ be a complex manifold. We prove that a compact submanifold $Ssubset M$ with splitting tangent sequence (called a splitting submanifold) is rational homogeneous when $M$ is in a large class of rational homogeneous spaces of Picard number one.
Let X be an $n$-dimensional Fano manifold of Picard number 1. We study how many different ways X can compactify the complex vector group C^n equivariantly. Hassett and Tschinkel showed that when X = P^n with n geq 2, there are many distinct ways that
For a Poisson manifold $M$ we develop systematic methods to compute its Picard group $Pic(M)$, i.e., its group of self Morita equivalences. We establish a precise relationship between $Pic(M)$ and the group of gauge transformations up to Poisson diff