ترغب بنشر مسار تعليمي؟ اضغط هنا

An Adaptive Algorithm Employing Continuous Linear Functionals

58   0   0.0 ( 0 )
 نشر من قبل Yuhan Ding
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic algorithms attempt to provide approximate solutions that differ from exact solutions by no more than a user-specified error tolerance. This paper describes an automatic, adaptive algorithm for approximating the solution to a general linear problem on Hilbert spaces. The algorithm employs continuous linear functionals of the input function, specifically Fourier coefficients. We assume that the Fourier coefficients of the solution decay sufficiently fast, but do not require the decay rate to be known a priori. We also assume that the Fourier coefficients decay steadily, although not necessarily monotonically. Under these assumptions, our adaptive algorithm is shown to produce an approximate solution satisfying the desired error tolerance, without prior knowledge of the norm of the function to be approximated. Moreover, the computational cost of our algorithm is shown to be essentially no worse than that of the optimal algorithm. We provide a numerical experiment to illustrate our algorithm.



قيم البحث

اقرأ أيضاً

116 - Botond Szabo 2014
We consider the problem of constructing Bayesian based confidence sets for linear functionals in the inverse Gaussian white noise model. We work with a scale of Gaussian priors indexed by a regularity hyper-parameter and apply the data-driven (slight ly modified) marginal likelihood empirical Bayes method for the choice of this hyper-parameter. We show by theory and simulations that the credible sets constructed by this method have sub-optimal behaviour in general. However, by assuming self-similarity the credible sets have rate-adaptive size and optimal coverage. As an application of these results we construct $L_{infty}$-credible bands for the true functional parameter with adaptive size and optimal coverage under self-similarity constraint.
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on t he mesh skeleton, and it is suitable for adaptive hp-meshes. The key point of the construction is the integration of the iterative solver with a fully automatic and reliable mesh refinement process provided by the DPG technology. The efficacy of the solution technique is showcased with numerous examples of linear acoustics and electromagnetic simulations, including simulations in the high-frequency regime, problems which otherwise would be intractable. Finally, we analyze the one-level preconditioner (smoother) for uniform meshes and we demonstrate that theoretical estimates of the condition number of the preconditioned linear system can be derived based on well established theory for self-adjoint positive definite operators.
Based on the geometric {it Triangle Algorithm} for testing membership of a point in a convex set, we present a novel iterative algorithm for testing the solvability of a real linear system $Ax=b$, where $A$ is an $m times n$ matrix of arbitrary rank. Let $C_{A,r}$ be the ellipsoid determined as the image of the Euclidean ball of radius $r$ under the linear map $A$. The basic procedure in our algorithm computes a point in $C_{A,r}$ that is either within $varepsilon$ distance to $b$, or acts as a certificate proving $b ot in C_{A,r}$. Each iteration takes $O(mn)$ operations and when $b$ is well-situated in $C_{A,r}$, the number of iterations is proportional to $log{(1/varepsilon)}$. If $Ax=b$ is solvable the algorithm computes an approximate solution or the minimum-norm solution. Otherwise, it computes a certificate to unsolvability, or the minimum-norm least-squares solution. It is also applicable to complex input. In a computational comparison with the state-of-the-art algorithm BiCGSTAB ({it Bi-conjugate gradient method stabilized}), the Triangle Algorithm is very competitive. In fact, when the iterates of BiCGSTAB do not converge, our algorithm can verify $Ax=b$ is unsolvable and approximate the minimum-norm least-squares solution. The Triangle Algorithm is robust, simple to implement, and requires no preconditioner, making it attractive to practitioners, as well as researchers and educators.
The analysis of linear ill-posed problems often is carried out in function spaces using tools from functional analysis. However, the numerical solution of these problems typically is computed by first discretizing the problem and then applying tools from (finite-dimensional) linear algebra. The present paper explores the feasibility of applying the Chebfun package to solve ill-posed problems. This approach allows a user to work with functions instead of matrices. The solution process therefore is much closer to the analysis of ill-posed problems than standard linear algebra-based solution methods.
209 - Changpeng Shao 2021
We propose a deterministic Kaczmarz method for solving linear systems $Ax=b$ with $A$ nonsingular. Instead of using orthogonal projections, we use reflections in the original Kaczmarz iterative method. This generates a series of points on an $n$-sphe re $S$ centered at the solution $x_*=A^{-1}b$. We show that these points are nicely distributed on $S$. Taking the average of several points will lead to an effective approximation to the solution. We will show how to choose these points efficiently. The numerical tests show that in practice this deterministic scheme converges much faster than we expected and can beat the (block) randomized Kaczmarz methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا