ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization of correlations in hybrid quantum systems

119   0   0.0 ( 0 )
 نشر من قبل Mark Everitt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we construct Wigner functions for hybrid continuous and discrete variable quantum systems. We demonstrate new capabilities in the visualization of the interactions and correlations within hybrid quantum systems. Specifically, we show how to clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-cat state. We further show how correlations are manifested in different types of interaction, leading to a deeper understanding of how quantum information is shared between two subsystems. Understanding the nature of the correlations between systems is central to harnessing quantum effects for information processing; the methods presented here reveal the nature of these correlations, allowing a clear visualization of the quantum information present in hybrid quantum systems. The methods presented here could be viewed as a form of quantum state spectroscopy.



قيم البحث

اقرأ أيضاً

We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlations
117 - Chaitanya Joshi , Jonas Larson , 2015
We investigate a possibility to generate non-classical states in light-matter coupled noisy quantum systems, namely the anisotropic Rabi and Dicke models. In these hybrid quantum systems a competing influence of coherent internal dynamics and environ ment induced dissipation drives the system into non-equilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Quantum mechanical properties like entanglement, discord and coherence act as fundamental resources in various quantum information processing tasks. Consequently, generating more resources from a few, typically termed as broadcasting is a task of utm ost significance. One such strategy of broadcasting is through the application of cloning machines. In this article, broadcasting of quantum resources beyond $2 otimes 2$ systems is investigated. In particular, in $2otimes3$ dimension, a class of states not useful for broadcasting of entanglement is characterized for a choice of optimal universal Heisenberg cloning machine. The broadcasting ranges for maximally entangled mixed states (MEMS) and two parameter class of states (TPCS) are obtained to exemplify our protocol. A significant derivative of the protocol is the generation of entangled states with positive partial transpose in $3 otimes 3$ dimension and states which are absolutely separable in $2 otimes 2$ dimension. Moving beyond entanglement, in $2 otimes d$ dimension, the impossibility to optimally broadcast quantum correlations beyond entanglement (QCsbE) (discord) and quantum coherence ($l_{1}$-norm) is established. However, some significant illustrations are provided to highlight that non-optimal broadcasting of QCsbE and coherence are still possible.
161 - G. Kurizki , P. Bertet , Y. Kubo 2015
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for information processing, secure communication and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multi-tasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and the challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
We investigate the equilibration and thermalization properties of quantum systems interacting with a finite dimensional environment. By exploiting the concept of time averaged states, we introduce a completely positive map which allows to describe in a quantitative way the dependence of the equilibrium state on the initial condition. Our results show that the thermalization of quantum systems is favored if the dynamics induces small system-environment correlations, as well as small changes in the environment, as measured by the trace distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا