ﻻ يوجد ملخص باللغة العربية
In the study of the odd-$Z$, even-$N$ nuclei $^{243}$Es and $^{249}$Md, performed at the University of Jyvaskyla, the fusion-evaporation reactions $^{197}$Au($^{48}$Ca,2$n$)$^{243}$Es and $^{203}$Tl($^{48}$Ca,2$n$)$^{249}$Md have been used for the first time. Fusion-evaporation residues were selected and detected using the RITU gas-filled separator coupled with the focal-plane spectrometer GREAT. For $^{243}$Es, the recoil decay correlation analysis yielded a half-life of $24 pm 3$s, and a maximum production cross section of $37 pm 10$ nb. In the same way, a half-life of $26 pm 1$ s, an $alpha$ branching ratio of 75 $pm$ 5%, and a maximum production cross section of 300 $pm$ 80 nb were determined for $^{249}$Md. The decay properties of $^{245}$Es, the daughter of $^{249}$Md, were also measured: an $alpha$ branching ratio of 54 $pm$ 7% and a half-life of 65 $pm$ 6 s. Experimental cross sections were compared to the results of calculations performed using the KEWPIE2 statistical fusion-evaporation code.
Decay spectroscopy of the odd-proton nuclei $^{249}$Md and $^{251}$Md has been performed. High-$K$ isomeric states were identified for the first time in these two nuclei through their electromagnetic decay. An isomeric state with a half-life of $2.4(
The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant
Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$gamma$) cross section uncertainty. Method: The $^{243}$Am
Kr83m with a short lifetime is an ideal calibration source for liquid xenon or liquid argon detector. The 83mKr isomer can be generated through the decay of Rb83 isotope, and Rb83 is usually produced by proton beams bombarding natural krypton atoms.
The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{prime}pi^{pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9,$GeV $e^-$ beam on a $^3$H