ﻻ يوجد ملخص باللغة العربية
Lead halide hybrid perovskites consist of an inorganic framework hosting a molecular cation located in the interstitial space. These compounds have been extensively studied as they have been identified as promising materials for photovoltaic applications with the interaction between the molecular cation and the inorganic framework implicated as influential for the electronic properties. CH3NH3PbCl3 undergoes two structural transitions from a high temperature cubic unit cell to a tetragonal phase at 177 K and an orthorhombic transition at 170 K. We have measured the low-frequency lattice dynamics using neutron spectroscopy and observe an energy broadening in the acoustic phonon linewidth towards the symmetry point QX =(2,1/2,0) when approaching the transitions. Concomitant with these zone boundary anomalies is a hardening of the entire acoustic phonon branch measured near the (2, 0, 0) Bragg position with decreasing temperature. Measurements of the elastic scattering at the Brillouin zone edges QX = (2,1/2,0), QM = (3/2,1/2,0), and QR = (3/2,3/2,5/2) show Bragg peaks appearing below these structural transitions. Based on selection rules of neutron scattering, we suggest that the higher 177 K transition is displacive with a distortion of the local octahedral environment and the lower transition is a rigid tilt transition of the octahedra. We do not observe any critical broadening in energy or momentum, beyond resolution, of these peaks near the transitions. We compare these results to the critical properties reported near the structural transitions in other perovskites. We suggest that the simultaneous onset of static resolution-limited Bragg peaks at the zone boundaries and the changes in acoustic phonon energies near the zone center is evidence of a coupling between the inorganic framework and the molecular cation.
The organic-inorganic lead halide perovskites are composed of organic molecules imbedded in an inorganic framework. The compounds with general formula CH$_{3}$NH$_{3}$PbX$_{3}$ (MAPbX$_{2}$) display large photovoltaic efficiencies for halogens $X$=Cl
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to t
The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovolta
Instability of perovskite photovoltaics is still a topic which is currently under intense debate, especially the role of water environment. Unraveling the mechanism of this instability is urgent to enable practical application of perovskite solar cel