ﻻ يوجد ملخص باللغة العربية
Fuzzy Dark Matter (FDM), motivated by string theory, has recently become a hot candidate for dark matter. The rest mass of FDM is believed to be $sim 10^{-22}$eV and the corresponding de-Broglie wave length is $sim 1$kpc. Therefore, the quantum effect of FDM plays an important role in structure formation. In order to study the cosmological structure formation in FDM model, several simulation techniques have been introduced. We review the current status and challenges in the cosmological simulation for the FDM model in this paper.
Dark matter models involving a very light bosonic particle, generally known as Fuzzy Dark Matter (FDM), have been recently attracting great interest in the cosmology community, as their wave-like phenomenology would simultaneously explain the longsta
We present an in-depth exploration of the phenomenon of dynamical friction in a universe where the dark matter is composed entirely of so-called Fuzzy Dark Matter (FDM), ultralight bosons of mass $msimmathcal{O}(10^{-22}),$eV. We review the classical
The cold dark matter (CDM) scenario has proved successful in cosmology. However, we lack a fundamental understanding of its microscopic nature. Moreover, the apparent disagreement between CDM predictions and subgalactic-structure observations has pro
We model the 21cm power spectrum across the Cosmic Dawn and the Epoch of Reionization (EoR) in fuzzy dark matter (FDM) cosmologies. The suppression of small mass halos in FDM models leads to a delay in the onset redshift of these epochs relative to c
We study how tidal streams from globular clusters may be used to constrain the mass of ultra-light dark matter particles, called `fuzzy dark matter (FDM). A general feature of FDM models is the presence of ubiquitous density fluctuations in bound, vi