Optical Response of Lumped-Element Kinetic-Inductance Detector Arrays


الملخص بالإنكليزية

We present an analysis of the optical response of lumped-element kinetic-inductance detector arrays, based on the NIKA2 1mm array. This array has a dual-polarization sensitive Hilbert inductor for directly absorbing incident photons. We present the optical response calculated from a transmission line model, simulated with HFSS and measured using a Fourier transform spectrometer. We have estimated the energy absorbed by individual component of a pixel, such as the inductor. The difference between the absorption efficiencies is expected to be 20% from the simulations. The Fourier-transform spectroscopy measurement, performed on the actual NIKA2 arrays, validates our simulations. We discuss several possible ways to increase the absorption efficiency. This analysis can be used for optimization of the focal plane layout and can be extended to other kinetic inductance detector array designs in millimeter, sub-millimeter and terahertz frequency bands.

تحميل البحث