ترغب بنشر مسار تعليمي؟ اضغط هنا

Context in Synthetic Biology: Memory Effects of Environments with Mono-molecular Reactions

101   0   0.0 ( 0 )
 نشر من قبل Johannes Falk
 تاريخ النشر 2018
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is therefore affected by potentially unknown interactions with the environment. It is well-known that the presence of the environment not only causes extrinsic noise but also memory effects, which means that the dynamics of the subnetwork is affected by its past states via a memory function that is characteristic of the environment. We study several generic scenarios for the coupling between a small module and a larger environment, with the environment consisting of a chain of mono-molecular reactions. By mapping the dynamics of this coupled system onto random walks, we are able to give exact analytical expressions for the arising memory functions. Hence, our results give insights into the possible types of memory functions and thereby help to better predict subnetwork dynamics.



قيم البحث

اقرأ أيضاً

Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named Tinker Cell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at www.tinkercell.com.
Innovation in synthetic biology often still depends on large-scale experimental trial-and-error, domain expertise, and ingenuity. The application of rational design engineering methods promise to make this more efficient, faster, cheaper and safer. B ut this requires mathematical models of cellular systems. And for these models we then have to determine if they can meet our intended target behaviour. Here we develop two complementary approaches that allow us to determine whether a given molecular circuit, represented by a mathematical model, is capable of fulfilling our design objectives. We discuss algebraic methods that are capable of identifying general principles guaranteeing desired behaviour; and we provide an overview over Bayesian design approaches that allow us to choose from a set of models, that model which has the highest probability of fulfilling our design objectives. We discuss their uses in the context of biochemical adaptation, and then consider how robustness can and should affect our design approach.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, w e create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
In this perspective article, we present a multidisciplinary approach for characterizing protein structure networks. We first place our approach in its historical context and describe the manner in which it synthesizes concepts from quantum chemistry, biology of polymer conformations, matrix mathematics, and percolation theory. We then explicitly provide the method for constructing the protein structure network in terms of non-covalently interacting amino acid side chains and show how a mine of information can be obtained from the graph spectra of these networks. Employing suitable mathematical approaches, such as the use of a weighted, Laplacian matrix to generate the spectra, enables us to develop rigorous methods for network comparison and to identify crucial nodes responsible for the network integrity through a perturbation approach. Our scoring methods have several applications in structural biology that are elusive to conventional methods of analyses. Here, we discuss the instances of: (a) Protein structure comparison that include the details of side chain connectivity, (b) The contribution to node clustering as a function of bound ligand, explaining the global effect of local changes in phenomena such as allostery and (c) The identification of crucial amino acids for structural integrity, derived purely from the spectra of the graph. We demonstrate how our method enables us to obtain valuable information on key proteins involved in cellular functions and diseases such as GPCR and HIV protease, and discuss the biological implications. We then briefly describe how concepts from percolation theory further augment our analyses. In our concluding perspective for future developments, we suggest a further unifying approach to protein structure analyses and a judicious choice of questions to employ our methods for larger, more complex networks, such as metabolic and disease networks.
One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا