ﻻ يوجد ملخص باللغة العربية
For an integer $qge 2$, a graph $G$ is called $q$-Ramsey for a graph $H$ if every $q$-colouring of the edges of $G$ contains a monochromatic copy of $H$. If $G$ is $q$-Ramsey for $H$, yet no proper subgraph of $G$ has this property then $G$ is called $q$-Ramsey-minimal for $H$. Generalising a statement by Burr, Nev{s}etv{r}il and Rodl from 1977 we prove that, for $qge 3$, if $G$ is a graph that is not $q$-Ramsey for some graph $H$ then $G$ is contained as an induced subgraph in an infinite number of $q$-Ramsey-minimal graphs for $H$, as long as $H$ is $3$-connected or isomorphic to the triangle. For such $H$, the following are some consequences. (1) For $2le r< q$, every $r$-Ramsey-minimal graph for $H$ is contained as an induced subgraph in an infinite number of $q$-Ramsey-minimal graphs for $H$. (2) For every $qge 3$, there are $q$-Ramsey-minimal graphs for $H$ of arbitrarily large maximum degree, genus, and chromatic number. (3) The collection ${{cal M}_q(H) : H text{ is 3-connected or } K_3}$ forms an antichain with respect to the subset relation, where ${cal M}_q(H)$ denotes the set of all graphs that are $q$-Ramsey-minimal for $H$. We also address the question which pairs of graphs satisfy ${cal M}_q(H_1)={cal M}_q(H_2)$, in which case $H_1$ and $H_2$ are called $q$-equivalent. We show that two graphs $H_1$ and $H_2$ are $q$-equivalent for even $q$ if they are $2$-equivalent, and that in general $q$-equivalence for some $qge 3$ does not necessarily imply $2$-equivalence. Finally we indicate that for connected graphs this implication may hold: Results by Nev{s}etv{r}il and Rodl and by Fox, Grinshpun, Liebenau, Person and Szabo imply that the complete graph is not $2$-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.
In 2015 Bloom and Liebenau proved that $K_n$ and $K_n+K_{n-1}$ possess the same $2$-Ramsey graphs for all $ngeq 3$ (with a single exception for $n=3$). In the following we give a simple proof that $K_n$ and $K_n+K_{n-1}$ possess the same $r$-Ramsey graphs for all $n, rgeq 3$.
We study graphs with the property that every edge-colouring admits a monochromatic cycle (the length of which may depend freely on the colouring) and describe those graphs that are minimal with this property. We show that every member in this class r
Given graphs $H_1, dots, H_t$, a graph $G$ is $(H_1, dots, H_t)$-Ramsey-minimal if every $t$-coloring of the edges of $G$ contains a monochromatic $H_i$ in color $i$ for some $iin{1, dots, t}$, but any proper subgraph of $G $ does not possess this pr
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
Given any graph $H$, a graph $G$ is said to be $q$-Ramsey for $H$ if every coloring of the edges of $G$ with $q$ colors yields a monochromatic subgraph isomorphic to $H$. Further, such a graph $G$ is said to be minimal $q$-Ramsey for $H$ if additiona