ﻻ يوجد ملخص باللغة العربية
Exploratory synthesis in novel chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employ a suite of computational materials discovery and informatics tools to construct a large stability map of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families with distinct stability and metastability, and highlights hundreds of promising new ternary nitride spaces for experimental investigation--from which we experimentally realized 7 new Zn- and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity, and covalency of solid-state bonding from the DFT-computed electron density, we reveal the complex interplay between chemistry, composition, and electronic structure in governing large-scale stability trends in ternary nitride materials.
In materials science, it is often assumed that ground state crystal structures predicted by density functional theory are the easiest polymorphs to synthesize. Ternary nitride materials, with many possible metastable polymorphs, provide a rich materi
Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nanostructures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing.
Two-dimensional (2D) transition metal nitrides (TMNs) are new members in the 2D materials family with a wide range of applications. Particularly, highly crystalline and large area thin films of TMNs are potentially promising for applications in elect
We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show e
Metal halide perovskites (MHPs) are nowadays one of the most studied semiconductors due to their exceptional performance as active layers in solar cells. Although MHPs are excellent solid-state semiconductors, they are also ionic compounds, where ion