ﻻ يوجد ملخص باللغة العربية
In an interacting neutrino gas, collective modes of flavor coherence emerge that can be propagating or unstable. We derive the general dispersion relation in the linear regime that depends on the neutrino energy and angle distribution. The essential scales are the vacuum oscillation frequency $omega=Delta m^2/(2E)$, the neutrino-neutrino interaction energy $mu=sqrt{2}G_{rm F} n_ u$, and the matter potential $lambda=sqrt{2}G_{rm F} n_e$. Collective modes require non-vanishing $mu$ and may be dynamical even for $omega=0$ (fast modes), or they may require $omega ot=0$ (slow modes). The growth rate of unstable fast modes can be fast itself (independent of $omega$) or can be slow (suppressed by $sqrt{|omega/mu|}$). We clarify the role of flavor mixing, which is ignored for the identification of collective modes, but necessary to trigger collective flavor motion. A large matter effect is needed to provide an approximate fixed point of flavor evolution, while spatial or temporal variations of matter and/or neutrinos are required as a trigger, i.e., to translate the disturbance provided by the mass term to seed stable or unstable flavor waves. We work out explicit examples to illustrate these points.
We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the ne
In our previous studies (see [1] and references therein) we developed a new theoretical framework that enabled one to consider a new mechanism of neutrino quantum decoherence engendered by the neutrino radiative decay. In parallel, another framework
Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience c
Collective neutrino oscillations can potentially play an important role in transporting lepton flavor in astrophysical scenarios where the neutrino density is large, typical examples are the early universe and supernova explosions. It has been argued
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings, such as supernovae, where the neutrino density is large. In this regime, neutrino-neutrino interactions are important and simulations in mea