ﻻ يوجد ملخص باللغة العربية
Strong gravitational lensing offers a wealth of astrophysical information on the background source it affects, provided the lensed source can be reconstructed as if it was seen in the absence of lensing. In the present work, we illustrate how sparse optimisation can address the problem. As a first step towards a full free-form lens modelling technique, we consider linear inversion of the lensed source under sparse regularisation and joint deblending from the lens light profile. The method is based on morphological component analysis, assuming a known mass model. We show with numerical experiments that representing the lens and source light using an undecimated wavelet basis allows us to reconstruct the source and to separate it from the foreground lens at the same time. Both the source and lens light have a non-analytic form, allowing for the flexibility needed in the inversion to represent arbitrarily small and complex luminous structures in the lens and source. in addition, sparse regularisation avoids over-fitting the data and does not require the use of any adaptive mesh or pixel grid. As a consequence, our reconstructed sources can be represented on a grid of very small pixels. Sparse regularisation in the wavelet domain also allows for automated computation of the regularisation parameter, thus minimising the impact of arbitrary choice of initial parameters. Our inversion technique for a fixed mass distribution can be incorporated in future lens modelling technique iterating over the lens mass parameters. The python package corresponding to the algorithms described in this article can be downloaded via the github platform at https://github.com/herjy/SLIT.
We describe a new method for analyzing gravitational lens images, for the case where the source light distribution is pixelized. The method is suitable for high resolution, high S/N data of a multiply-imaged extended source. For a given mass distribu
In this article we study the well-known strong lensing system SDSS J1004+4112. Not only does it host a large-separation lensed quasar with measured time-delay information, but several other lensed galaxies have been identified as well. A previously d
Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z~2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a c
We present $Hubble Space Telescope$ ($HST$) imaging and grism spectroscopy of a strongly lensed LIRG at $z=0.816$, SGAS 143845.1$+$145407, and use the magnification boost of gravitational lensing to study the distribution of star formation throughout
A fraction of light scalar dark matter, especially axions, may organize into Bose-Einstein condensates, gravitationally bound clumps, boson stars, and be present in large number in galactic halos today. We compute the expected number of gravitational