ﻻ يوجد ملخص باللغة العربية
When mobile robots maneuver near people, they run the risk of rudely blocking their paths; but not all people behave the same around robots. People that have not noticed the robot are the most difficult to predict. This paper investigates how mobile robots can generate acceptable paths in dynamic environments by predicting human behavior. Here, human behavior may include both physical and mental behavior, we focus on the latter. We introduce a simple safe interaction model: when a human seems unaware of the robot, it should avoid going too close. In this study, people around robots are detected and tracked using sensor fusion and filtering techniques. To handle uncertainties in the dynamic environment, a Partially-Observable Markov Decision Process Model (POMDP) is used to formulate a navigation planning problem in the shared environment. Peoples awareness of robots is inferred and included as a state and reward model in the POMDP. The proposed planner enables a robot to change its navigation plan based on its perception of each persons robot-awareness. As far as we can tell, this is a new capability. We conduct simulation and experiments using the Toyota Human Support Robot (HSR) to validate our approach. We demonstrate that the proposed framework is capable of running in real-time.
Path planning and collision avoidance are challenging in complex and highly variable environments due to the limited horizon of events. In literature, there are multiple model- and learning-based approaches that require significant computational reso
In this paper we present a new approach for dynamic motion planning for legged robots. We formulate a trajectory optimization problem based on a compact form of the robot dynamics. Such a form is obtained by projecting the rigid body dynamics onto th
We propose a method to tackle the problem of mapless collision-avoidance navigation where humans are present using 2D laser scans. Our proposed method uses ego-safety to measure collision from the robots perspective while social-safety to measure the
Integrating mobile robots into human society involves the fundamental problem of navigation in crowds. This problem has been studied by considering the behaviour of humans at the level of individuals, but this representation limits the computational
Enhanced AutoNav (ENav), the baseline surface navigation software for NASAs Perseverance rover, sorts a list of candidate paths for the rover to traverse, then uses the Approximate Clearance Evaluation (ACE) algorithm to evaluate whether the most hig