ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson effect in a few-hole quantum dot

88   0   0.0 ( 0 )
 نشر من قبل Joost Ridderbos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a Ge-Si core-shell nanowire to realise a Josephson field-effect transistor with highly transparent contacts to superconducting leads. By changing the electric field we gain access to two distinct regimes not combined before in a single device: In the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion supercurrent is carried by single-particle levels of a strongly coupled quantum dot operating in the few-hole regime. These results establish Ge-Si nanowires as an important platform for hybrid superconductor-semiconductor physics and Majorana fermions.



قيم البحث

اقرأ أيضاً

98 - Abhiram Soori 2019
A quantum dot weakly coupled to two normal metal leads exhibits resonant transmission when one of the dot energy levels lies within the applied bias window. But when the quantum dot is sidecoupled to the transport channel, transmission in the channel is suppressed when a dot energy lies in the bias window. A steady current can also be driven in a transport channel by connecting it to superconducting reservoirs and applying a Josephson phase difference instead of a voltage bias. An interesting question is to investigate the transport across quantum dot connected to two superconductors maintained at a superconducting phase difference. To incorporate the geometry where quantum dot is sidecoupled, we consider a quantum dot with two sites connected to the superconductors in two geometrical configurations: (A) the one where both the sites are in the transport channel and (B) the other where only one site is in the transport channel and the second site sidecoupled. We find that both the configurations show resonant transmission for Josephson current and give qualitatively same result when the onsite energies of the two sites in the dot are equal. The two configurations exhibit distinct Josephson current characteristics when the onsite energies of the two sites are equal in magnitude and opposite in sign. We understand the obtained results. The systems studied are within the reach of current experiments.
Transport measurements at cryogenic temperatures through a few electron top gated quantum dot fabricated in a silicon/silicon-germanium heterostructure are reported. Variations in gate voltage induce a transition from an isolated dot toward a dot str ongly coupled to the leads. In addition to Coulomb blockade, when the dot is strongly coupled to the leads, we observe the appearance of a zero bias conductance peak due to the Kondo effect. The Kondo peak splits in a magnetic field, and the splitting scales linearly with the applied field. We also observe a transition from pure Coulomb blockade to peaks with a Fano lineshape.
We analyze the ground state properties of an array of quantum dots connected in series between superconducting electrodes. This system is represented by a finite Hubbard chain coupled at both ends to BCS superconductors. The ground state is obtained using the Lanczos algorithm within a low energy theory in which the bulk superconductors are replaced by effective local pairing potentials. We study the conditions for the inversion of the sign of the Josephson coupling ($pi$-junction behavior) as a function of the model parameters. Results are presented in the form of phase diagrams which provide a direct overall view of the general trends as the size of the system is increased, exhibiting a strong even-odd effect. The analysis of the spin-spin correlation functions and local charges give further insight into the nature of the ground state and how it is transformed by the presence of superconductivity in the leads. Finally we study the scaling of the Josephson current with the system size and relate these results with previous calculations of Josephson transport through a Luttinger liquid.
125 - L. Gaudreau , A. Kam , G. Granger 2009
In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is im portant as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon do physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا