ﻻ يوجد ملخص باللغة العربية
We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially from those in the literature, where fermionic ADM with attractive self-interactions was employed to destabilize neutron stars more effectively than non-interacting fermionic ADM. By contrast, we argue that fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic ADM with no self-interactions.
We study the evolution of cosmological domain walls in models with asymmetric potentials. Our research goes beyond the standard case of spontaneous breaking of an approximate symmetry. When the symmetry is explicitly broken the potential exhibits nea
A number of stability criteria exist for dark energy theories, associated with requiring the absence of ghost, gradient and tachyonic instabilities. Tachyonic instabilities are the least well explored of these in the dark energy context and we here d
Dark matter could be composed of compact dark objects (CDOs). We find that the oscillation of CDOs inside neutron stars can be a detectable source of gravitational waves (GWs). The GW strain amplitude depends on the mass of the CDO, and its frequency
The fundamental nature of dark matter is entirely unknown. A compelling candidate is Twin Higgs mirror matter, invisible hidden-sector cousins of the Standard Model particles and forces. This generically predicts mirror neutron stars, degenerate obje
We consider a general class of axion models, including the QCD and string axion, in which the PQ symmetry is broken before or during inflation. Assuming the axion is the dominant component of the dark matter, we discuss axion star formation in virial