ﻻ يوجد ملخص باللغة العربية
The kinetic effects of magnetic fields on the transport of relativistic jet in the intergalactic medium remain uncertain, especially for their perpendicular component. By particle-in-cell simulations, we find that when only jet electrons are fully magnetized, they are directly deflected by the magnetic field, but jet protons are mainly dragged by collective charge-separation electric field. However, when both electrons and protons are fully magnetized, the contrary is the case. Their balance tremendously distorts the jet density and electromagnetic fields, leading to enormous energy exchange between different species and fields. As a result, the electron spectrum energy distribution (SED) gets reshaped and the power law slope of the SED decreases as the magnetic field strength increases. In other words, we may infer that magnetic fields around the relativistic jet play a crucial role in shaping the observed SED.
The composition of the astrophysical relativistic jets remains uncertain. By kinetic particle-in-cell simulations, we show that the baryon component in the jet, or the so-called baryon loading effect (BLE), heavily affects relativistic jets transport
We analyze how the turbulent transport of $mathbf{E}times mathbf{B}$ type in magnetically confined plasmas is affected by intermittent features of turbulence. The latter are captured by the non-Gaussian distribution $P(phi)$ of the turbulent electric
To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolut
Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass
We study supernova-driven galactic outflows as a mechanism for injecting turbulence in the intergalactic medium (IGM) far from galaxies. To this aim we follow the evolution of a 10^13 Msun galaxy along its merger tree, with carefully calibrated presc