ترغب بنشر مسار تعليمي؟ اضغط هنا

Admissibility of the usual confidence set for the mean of a univariate or bivariate normal population: The unknown-variance case

305   0   0.0 ( 0 )
 نشر من قبل Hannes Leeb
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Gaussian linear regression model (with unknown mean and variance), we show that the standard confidence set for one or two regression coefficients is admissible in the sense of Joshi (1969). This solves a long-standing open problem in mathematical statistics, and this has important implications on the performance of modern inference procedures post-model-selection or post-shrinkage, particularly in situations where the number of parameters is larger than the sample size. As a technical contribution of independent interest, we introduce a new class of conjugate priors for the Gaussian location-scale model.



قيم البحث

اقرأ أيضاً

Consider a linear regression model with independent and identically normally distributed random errors. Suppose that the parameter of interest is a specified linear combination of the regression parameters. We prove that the usual confidence interval for this parameter is admissible within a broad class of confidence intervals.
Consider X_1,X_2,...,X_n that are independent and identically N(mu,sigma^2) distributed. Suppose that we have uncertain prior information that mu = 0. We answer the question: to what extent can a frequentist 1-alpha confidence interval for mu utilize this prior information?
A variance reduction technique in nonparametric smoothing is proposed: at each point of estimation, form a linear combination of a preliminary estimator evaluated at nearby points with the coefficients specified so that the asymptotic bias remains un changed. The nearby points are chosen to maximize the variance reduction. We study in detail the case of univariate local linear regression. While the new estimator retains many advantages of the local linear estimator, it has appealing asymptotic relative efficiencies. Bandwidth selection rules are available by a simple constant factor adjustment of those for local linear estimation. A simulation study indicates that the finite sample relative efficiency often matches the asymptotic relative efficiency for moderate sample sizes. This technique is very general and has a wide range of applications.
Let $pi_1$ and $pi_2$ be two independent populations, where the population $pi_i$ follows a bivariate normal distribution with unknown mean vector $boldsymbol{theta}^{(i)}$ and common known variance-covariance matrix $Sigma$, $i=1,2$. The present pap er is focused on estimating a characteristic $theta_{textnormal{y}}^S$ of the selected bivariate normal population, using a LINEX loss function. A natural selection rule is used for achieving the aim of selecting the best bivariate normal population. Some natural-type estimators and Bayes estimator (using a conjugate prior) of $theta_{textnormal{y}}^S$ are presented. An admissible subclass of equivariant estimators, using the LINEX loss function, is obtained. Further, a sufficient condition for improving the competing estimators of $theta_{textnormal{y}}^S$ is derived. Using this sufficient condition, several estimators improving upon the proposed natural estimators are obtained. Further, a real data example is provided for illustration purpose. Finally, a comparative study on the competing estimators of $theta_{text{y}}^S$ is carried-out using simulation.
80 - Holger Dette , Weichi Wu 2021
The problem of constructing a simultaneous confidence band for the mean function of a locally stationary functional time series $ { X_{i,n} (t) }_{i = 1, ldots, n}$ is challenging as these bands can not be built on classical limit theory. On the one hand, for a fixed argument $t$ of the functions $ X_{i,n}$, the maximum absolute deviation between an estimate and the time dependent regression function exhibits (after appropriate standardization) an extreme value behaviour with a Gumbel distribution in the limit. On the other hand, for stationary functional data, simultaneous confidence bands can be built on classical central theorems for Banach space valued random variables and the limit distribution of the maximum absolute deviation is given by the sup-norm of a Gaussian process. As both limit theorems have different rates of convergence, they are not compatible, and a weak convergence result, which could be used for the construction of a confidence surface in the locally stationary case, does not exist. In this paper we propose new bootstrap methodology to construct a simultaneous confidence band for the mean function of a locally stationary functional time series, which is motivated by a Gaussian approximation for the maximum absolute deviation. We prove the validity of our approach by asymptotic theory, demonstrate good finite sample properties by means of a simulation study and illustrate its applicability analyzing a data example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا