ﻻ يوجد ملخص باللغة العربية
We investigate the fracture of heterogeneous materials occurring under unloading from an initial load. Based on a fiber bundle model of time dependent fracture, we show that depending on the unloading rate the system has two phases: for rapid unloading the system suffers only partial failure and it has an infinite lifetime, while at slow unloading macroscopic failure occurs in a finite time. The transition between the two phases proved to be analogous to continuous phase transitions. Computer simulations revealed that during unloading the fracture proceeds in bursts of local breakings triggered by slowly accumulating damage. In both phases the time evolution starts with a relaxation of the bursting activity characterized by a universal power law decay of the burst rate. In the phase of finite lifetime the initial slowdown is followed by an acceleration towards macroscopic failure where the increasing rate of bursts obeys the (inverse) Omori law of earthquakes. We pointed out a strong correlation between the time where the event rate reaches a minimum value and of the lifetime of the system which allows for forecasting of the imminent catastrophic failure.
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decre
We present a study of the fiber bundle model using equal load sharing dynamics where the breaking thresholds of the fibers are drawn randomly from a power law distribution of the form $p(b)sim b^{-1}$ in the range $10^{-beta}$ to $10^{beta}$. Tuning
We investigate the size scaling of the macroscopic fracture strength of heterogeneous materials when microscopic disorder is controlled by fat-tailed distributions. We consider a fiber bundle model where the strength of single fibers is described by
We investigate how the dimensionality of the embedding space affects the microscopic crackling dynamics and the macroscopic response of heterogeneous materials. Using a fiber bundle model with localized load sharing computer simulations are performed
We discuss the cooperative failure dynamics in the Fiber Bundle Model where the individual elements or fibers are Hookean springs, having identical spring constant but different breaking strengths. When the bundle is stressed or strained, especially