ﻻ يوجد ملخص باللغة العربية
Recently, detailed experiments on visco-elastic channel flow have provided convincing evidence for a nonlinear instability scenario which we had argued for based on calculations for visco-elastic Couette flow. Motivated by these experiments we extend the previous calculations to the case of visco-elastic Poiseuille flow, using the Oldroyd-B constitutive model. Our results confirm that the subcritical instability scenario is similar for both types of flow, and that the nonlinear transition occurs for Weissenberg numbers somewhat larger than one. We provide detailed results for the convergence of our expansion and for the spatial structure of the mode that drives the instability. This also gives insight into possible similarities with the mechanism of the transition to turbulence in Newtonian pipe flow.
In wall-bounded flows, the laminar regime remain linearly stable up to large values of the Reynolds number while competing with nonlinear turbulent solutions issued from finite amplitude perturbations. The transition to turbulence of plane channel fl
The ultimate goal of a sound theory of turbulence in fluids is to close in a rational way the Reynolds equations, namely to express the time averaged turbulent stress tensor as a function of the time averaged velocity field. This closure problem is a
Most biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they d
The convection velocity of localized wave packet in plane-Poiseuille flow is found to be determined by a solitary wave at the centerline of a downstream vortex dipole in its mean field after deducting the basic flow. The fluctuation component followi
A modal stability analysis shows that plane Poiseuille flow of an Oldroyd-B fluid becomes unstable to a `center mode with phase speed close to the maximum base-flow velocity, $U_{max}$. The governing dimensionless groups are the Reynolds number $Re =