ﻻ يوجد ملخص باللغة العربية
In this note we give a(nother) combinatorial proof of an old result of Baik--Rains: that for appropriately considered independent geometric weights, the generating series for last passage percolation polymers in a $2n times n times n$ quarter square (point-to-half-line-reflected geometry) splits as the product of two simpler generating series---that for last passage percolation polymers in a point-to-line geometry and that for last passage percolation in a point-to-point-reflected (half-space) geometry, the latter both in an $n times n times n$ triangle. As a corollary, for iid geometric random variables---of parameter $q$ off-diagonal and parameter $sqrt{q}$ on the diagonal---we see that the last passage percolation time in said quarter square obeys Tracy--Widom $mathrm{GOE}^2$ fluctuations in the large $n$ limit as both the point-to-line and the point-to-point-reflected geometries have known GOE fluctuations. This is a discrete analogue of a celebrated Baik--Rains theorem (the limit $q to 0$) and more recently of results from Bisis PhD thesis (the limit $q to 1$).
We consider time correlation for KPZ growth in 1+1 dimensions in a neighborhood of a characteristics. We prove convergence of the covariance with droplet, flat and stationary initial profile. In particular, this provides a rigorous proof of the exact
These lecture notes are written as reference material for the Advanced Course Hydrodynamical Methods in Last Passage Percolation Models, given at the 28th Coloquio Brasileiro de Matematica at IMPA, Rio de Janeiro, July 2011.
In this paper we study stationary last passage percolation (LPP) in half-space geometry. We determine the limiting distribution of the last passage time in a critical window close to the origin. The result is a new two-parameter family of distributio
We consider directed last-passage percolation on the random graph G = (V,E) where V = Z and each edge (i,j), for i < j, is present in E independently with some probability 0 < p <= 1. To every present edge (i,j) we attach i.i.d. random weights v_{i,j
The aim of this article is to study the forest composed by point-to-line geodesics in the last-passage percolation model with exponential weights. We will show that the location of the root can be described in terms of the maxima of a random walk, wh