ترغب بنشر مسار تعليمي؟ اضغط هنا

Stealth Schwarzschild solution in shift symmetry breaking theories

52   0   0.0 ( 0 )
 نشر من قبل Masato Minamitsuji
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find stealth Schwarzschild solutions with a nontrivial profile of the scalar field regular on the horizon in the Einstein gravity coupled to the scalar field with the k-essence and/or generalized cubic galileon terms, which is a subclass of the Horndeski theory breaking the shift symmetry, where the propagation speed of gravitational waves coincides with the speed of light. After deriving sufficient conditions for the shift symmetry breaking theory to allow a general Ricci-flat metric solution with a nontrivial scalar field profile, we focus on the stealth Schwarzschild solution with the scalar field with or without time dependence. For the profile $phi=phi_0(r)$, we explicitly obtain two types of stealth Schwarzschild solutions, one of which is regular on the event horizon. The linear perturbation analysis clarifies that the kinetic term of the scalar mode identically vanishes, indicating that the scalar mode is strongly coupled. The absence of the kinetic term of the scalar mode in the quadratic action would inevitably arise for the stealth Schwarzschild solutions in the theory with a general scalar field profile depending only on the spatial coordinates. On the other hand, for the time-dependent scalar field profile, we clarify that there does not exist a stealth Schwarzschild solution in the shift symmetry breaking theories.



قيم البحث

اقرأ أيضاً

We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evol ution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.
We explore General Relativity solutions with stealth scalar hair in general quadratic higher-order scalar-tensor theories. Adopting the assumption that the scalar field has a constant kinetic term, we derive in a fully covariant manner a set of condi tions under which the Euler-Lagrange equations allow General Relativity solutions as exact solutions in the presence of a general matter component minimally coupled to gravity. The scalar field possesses a nontrivial profile, which can be obtained by integrating the condition of constant kinetic term for each metric solution. We demonstrate the construction of the scalar field profile for several cases including the Kerr-Newman-de Sitter spacetime as a general black hole solution characterized by mass, charge, and angular momentum in the presence of a cosmological constant. We also show that asymptotically anti-de Sitter spacetimes cannot support nontrivial scalar hair.
157 - Wen-Du Li , Yu-Zhu Chen , 2016
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide expli cit approximate expressions for bound-state eigenvalues and scattering phase shifts. (2) By virtue of the exact solutions, we give a direct calculation for the discontinuous jump on the horizon for massive scalar fields, while in literature such a jump is obtained from an asymptotic solution by an analytic extension treatment.
97 - Michele Lenzi 2021
Starting from the infinite set of possible master equations for the perturbations of Schwarzschild black holes, with master functions linear in the metric perturbations and their first-order derivatives, we show that of all them are connected via Dar boux transformations. These transformations preserve physical quantities like the quasinormal mode frequencies and the infinite hierarchy of Korteweg-de Vries conserved quantities, revealing a new hidden symmetry in the description of the perturbations of Schwarzschild black holes: Darboux covariance.
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breakin g, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinskys model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways and we study in detail some of these possibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا