ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric electrolytes near structured dielectric interfaces

112   0   0.0 ( 0 )
 نشر من قبل Erik Luijten
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ion distribution of electrolytes near interfaces with dielectric contrast has important consequences for electrochemical processes and many other applications. To date, most studies of such systems have focused on geometrically simple interfaces, for which dielectric effects are analytically solvable or computationally tractable. However, all real surfaces display nontrivial structure at the nanoscale and have, in particular, nonuniform local curvature. Using a recently developed, highly efficient computational method, we investigate the effect of surface geometry on ion distribution and interface polarization. We consider an asymmetric 2:1 electrolyte bounded by a sinusoidally deformed solid surface. We demonstrate that even when the surface is neutral, the electrolyte acquires a nonuniform ion density profile near the surface. This profile is asymmetric and leads to an effective charging of the surface. We furthermore show that the induced charge is modulated by the local curvature. The effective charge is opposite in sign to the multivalent ions and is larger in concave regions of the surface.



قيم البحث

اقرأ أيضاً

Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that arise from inhomogeneous polarization charge distributions are generally neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization charges in dynamical dielectric geometries, and demonstrate that dielectric effects emph{qualitatively} alter the predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
Ion mobility and ionic conductance in nanodevices are known to deviate from bulk behavior, a phenomenon often attributed to surface effects. We demonstrate that dielectric mismatch between the electrolyte and the surface can qualitatively alter ionic transport in a counterintuitive manner. Instead of following the polarization-induced modulation of the concentration profile, mobility is enhanced or reduced by changes in the ionic atmosphere near the interface and affected by a polarization force parallel to the surface. In addition to revealing this mechanism, we explore the effect of salt concentration and electrostatic coupling.
Microscopic pathways of structural phase transitions are difficult to probe because they occur over multiple, disparate time and length scales. Using $in$ $situ$ nanoscale cathodoluminescence microscopy, we visualize the thermally-driven transition t o the perovskite phase in hundreds of non-perovskite phase nanowires, resolving the initial nanoscale nucleation and subsequent mesoscale growth and quantifying the activation energy for phase propagation. In combination with molecular dynamics computer simulations, we reveal that the transformation does not follow a simple martensitic mechanism, and proceeds via ion diffusion through a liquid-like interface between the two structures. While cations are disordered in this liquid-like region, the halide ions retain substantial spatial correlations. We find that the anisotropic crystal structure translates to faster nucleation of the perovskite phase at nanowire ends and faster growth along the long nanowire axis. These results represent a significant step towards manipulating structural phases at the nanoscale for designer materials properties.
We measure the spin-charge interconversion by the spin Hall effect in ferromagnetic/Pt nanodevices. The extracted effective spin Hall angles (SHAs) of Pt evolve drastically with the ferromagnetic (FM) materials (CoFe, Co, and NiFe), when assuming tra nsparent interfaces and a bulk origin of the spin injection/detection by the FM elements. By carefully measuring the interface resistance, we show that it is quite large and cannot be neglected. We then evidence that the spin injection/detection at the FM/Pt interfaces are dominated by the spin polarization of the interfaces. We show that interfacial asymmetric spin scattering becomes the driving mechanism of the spin injection in our samples.
We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with a spect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا