Image registration and super resolution from first principles


الملخص بالإنكليزية

Image registration is the inference of transformations relating noisy and distorted images. It is fundamental in computer vision, experimental physics, and medical imaging. Many algorithms and analyses exist for inferring shift, rotation, and nonlinear transformations between image coordinates. Even in the simplest case of translation, however, all known algorithms are biased and none have achieved the precision limit of the Cramer Rao bound (CRB). Following Bayesian inference, we prove that the standard method of shifting one image to match another cannot reach the CRB. We show that the bias can be cured and the CRB reached if, instead, we use Super Registration: learning an optimal model for the underlying image and shifting that to match the data. Our theory shows that coarse-graining oversampled images can improve registration precision of the standard method. For oversampled data, our method does not yield striking improvements as measured by eye. In these cases, however, we show our new registration method can lead to dramatic improvements in extractable information, for example, inferring $10times$ more precise particle positions.

تحميل البحث