ﻻ يوجد ملخص باللغة العربية
We develop a simple and unbiased numerical method to obtain the uniform susceptibility of quantum many body systems. When a Hamiltonian is spatially deformed by multiplying it with a sine square function that smoothly decreases from the system center toward the edges, the size-scaling law of the excitation energy is drastically transformed to a rapidly converging one. Then, the local magnetization at the system center becomes nearly size independent; the one obtained for the deformed Hamiltonian of a system length as small as L=10 provides the value obtained for the original uniform Hamiltonian of L=100. This allows us to evaluate a bulk magnetic susceptibility by using the magnetization at the center by existing numerical solvers without any approximation, parameter tuning, or the size-scaling analysis. We demonstrate that the susceptibilities of the spin-1/2 antiferromagnetic Heisenberg chain and square lattice obtained by our scheme at L=10 agree within 10 to (-3) with exact analytical and numerical solutions for L=infinite down to temperature of 0.1 times the coupling constant. We apply this method to the spin-1/2 kagome lattice Heisenberg antiferromagnet which is of prime interest in the search of spin liquids.
The ground states of square lattice two-dimensional antiferromagnets with anisotropy in an external magnetic field are determined using Monte Carlo simulations and compared to theoretical analysis. We find a new phase in between the spin-flop and spi
We successfully synthesize single crystals of the verdazyl radical $alpha$-2,3,5-Cl$_3$-V. $Ab$ $initio$ molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, $J_{rm{1}}$ and $J_{rm{2}}$ ($alpha =J_{rm{2}}/J_{r
Sine-square deformation (SSD) is a treatment proposed in quantum systems, which spatially modifies a Hamiltonian, gradually decreasing the local energy scale from the center of the system toward the edges by a sine-squared envelope function. It is kn
Over the last few years, Sr$_2$IrO$_4$, a single-layer member of the Ruddlesden-Popper series iridates, has received much attention as a close analog of cuprate high-temperature superconductors. Although there is not yet firm evidence for superconduc
We study the field dependence of the antiferromagnetic spin-1/2 Heisenberg model on the square lattice by means of exact diagonalizations. In a first part, we calculate the spin-wave velocity, the spin-stiffness, and the magnetic susceptibility and t