ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential geometric invariants for time-reversal symmetric Bloch-bundles II: The low dimensional Quaternionic case

55   0   0.0 ( 0 )
 نشر من قبل Giuseppe De Nittis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to the construction of differential geometric invariants for the classification of Quaternionic vector bundles. Provided that the base space is a smooth manifold of dimension two or three endowed with an involution that leaves fixed only a finite number of points, it is possible to prove that the Wess-Zumino term and the Chern-Simons invariant yield topological quantities able to distinguish between inequivalent realization of Quaternionic structures.



قيم البحث

اقرأ أيضاً

We describe some applications of group- and bundle-theoretic methods in solid state physics, showing how symmetries lead to a proof of the localization of electrons in gapped crystalline solids, as e.g. insulators and semiconductors. We shortly revie w the Bloch-Floquet decomposition of periodic operators, and the related concepts of Bloch frames and composite Wannier functions. We show that the latter are almost-exponentially localized if and only if there exists a smooth periodic Bloch frame, and that the obstruction to the latter condition is the triviality of a Hermitian vector bundle, called the Bloch bundle. The role of additional $mathbb{Z}_2$-symmetries, as time-reversal and space-reflection symmetry, is discussed, showing how time-reversal symmetry implies the triviality of the Bloch bundle, both in the bosonic and in the fermionic case. Moreover, the same $mathbb{Z}_2$-symmetry allows to define a finer notion of isomorphism and, consequently, to define new topological invariants, which agree with the indices introduced by Fu, Kane and Mele in the context of topological insulators.
We generalise the Kreck-Stolz invariants s_2 and s_3 by defining a new invariant, the t-invariant, for quaternionic line bundles E over closed spin-manifolds M of dimension 4k-1 with H^3(M; Q) = 0 such that c_2(E)in H^4(M) is torsion. The t-invariant classifies closed smooth oriented 2-connected rational homology 7-spheres up to almost-diffeomorphism, that is, diffeomorphism up to connected sum with an exotic sphere. It also detects exotic homeomorphisms between such manifolds. The t-invariant also gives information about quaternionic line bundles over a fixed manifold and we use it to give a new proof of a theorem of Feder and Gitler about the values of the second Chern classes of quaternionic line bundles over HP^k. The t-invariant for S^{4k-1} is closely related to the Adams e-invariant on the (4k-5)-stem.
We find the complete equivalence group of a class of (1+1)-dimensional second-order evolution equations, which is infinite-dimensional. The equivariant moving frame methodology is invoked to construct, in the regular case of the normalization procedu re, a moving frame for a group related to the equivalence group in the context of equivalence transformations among equations of the class under consideration. Using the moving frame constructed, we describe the algebra of differential invariants of the former group by obtaining a minimum generating set of differential invariants and a complete set of independent operators of invariant differentiation.
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to -1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and 3. In 2d, the obstruction to the existence of such a frame is shown to be encoded in a $mathbb{Z}_2$-valued topological invariant, which can be computed by a simple algorithm. We prove that the latter agrees with the Fu-Kane index. In 3d, instead, four $mathbb{Z}_2$ invariants emerge from the construction, again related to the Fu-Kane-Mele indices. When no topological obstruction is present, we provide a constructive algorithm yielding explicitly a periodic and time-reversal invariant Bloch frame. The result is formulated in an abstract setting, so that it applies both to discrete models and to continuous ones.
We introduce $mathbb Z_2$-valued bulk invariants for symmetry-protected topological phases in $2+1$ dimensional driven quantum systems. These invariants adapt the $W_3$-invariant, expressed as a sum over degeneracy points of the propagator, to the re spective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary correspondence that holds for each invariant relates a non-zero value of the bulk invariant to the existence of symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving, where they successfully predict the appearance of boundary states that exist despite the trivial topological character of the Floquet bands. Especially for particle-hole symmetry, combination of the $W_3$ and the $mathbb Z_2$-invariants allows us to distinguish between weak and strong topological phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا