ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Earthquake Detection with a Dual Torsion-Beam Gravimeter

63   0   0.0 ( 0 )
 نشر من قبل David McManus
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground mass is redistributed during an earthquake causing the local gravitational potential to change. These gravitational fluctuations travel at the speed of light meaning they will arrive at a remote location significantly earlier than the fastest seismic waves. If these gravitational signals are measured by a gravimeter then early warning can be provided for an imminent earthquake. Earlier detection of earthquakes could be used to protect crucial infrastructure and save lives. The Torsion Pendulum Dual Oscillator (TorPeDO) is a gravity gradient sensor that has been constructed at the Australian National University. In this article we investigate the feasibility of measuring prompt gravitational transients from earthquakes with the TorPeDO. We simulated the response of the sensor to these signals and inserted these responses into scaled TorPeDO strain data to test their detection using a matched filter search. This simulation allows us to estimate the signal-to-noise ratio and detection time of the sensor to these transient signals, along with the influence of different detection thresholds on range and detection time. This article also proposes a method of earthquake localisation using TorPeDO sensors without the need for accurate signal timing. A real-time estimate of earthquake magnitude can be produced by combining this calculated location with TorPeDO strain data. We find that a TorPeDO system operating at design sensitivity would measure a moment magnitude 7.1 earthquake, 200~km away, reaching a signal-to-noise ratio of 5 at 15.7~s after the event starts. This will provide roughly 50.96~s of warning before the arrival of the first S waves.



قيم البحث

اقرأ أيضاً

We report the observation of the ground rotation induced by the Mw=9.0, 11th of March 2011, Japan earthquake. The rotation measurements have been conducted with a ring laser gyroscope operating in a vertical plane, thus detecting rotations around the horizontal axis. Comparison of ground rotations with vertical accelerations from a co-located force-balance accelerometer shows excellent ring laser coupling at periods longer than 100s. Under the plane wave assumption, we derive a theoretical relationship between horizontal rotation and vertical acceleration for Rayleigh waves. Due to the oblique mounting of the gyroscope with respect to the wave direction-of-arrival, apparent velocities derived from the acceleration / rotation rate ratio are expected to be always larger than, or equal to the true wave propagation velocity. This hypothesis is confirmed through comparison with fundamental-mode, Rayleigh wave phase velocities predicted for a standard Earth model.
77 - S. Lee , A. Cardini , M. Cascella 2017
In this paper, we describe measurements of the response functions of a fiber-based dual- readout calorimeter for pions, protons and multiparticle jets with energies in the range from 10 to 180 GeV. The calorimeter uses lead as absorber material and h as a total mass of 1350 kg. It is complemented by leakage counters made of scintillating plastic, with a total mass of 500 kg. The effects of these leakage counters on the calorimeter performance are studied as well. In a separate section, we investigate and compare different methods to measure the energy resolution of a calorimeter. Using only the signals provided by the calorimeter, we demonstrate that our dual-readout calorimeter, calibrated with electrons, is able to reconstruct the energy of proton and pion beam particles to within a few percent at all energies. The fractional widths of the signal distributions for these particles (sigma/E) scale with the beam energy as 30%/sqrt(E), without any additional contributing terms.
We describe a torsion pendulum with a large mass-quadrupole moment and a resonant frequency of 2.8 mHz, whose angle is measured using a modified Michelson interferometer. The system achieved noise levels of $sim200 text{prad}/sqrt{text{Hz}}$ between 0.2-30 Hz and $sim10 text{prad}/sqrt{text{Hz}}$ above 100 Hz. Such a system can be applied to a broad range of fields from the study of rotational seismic motion and elastogravity signals to gravitational wave observation and tests of gravity.
Ions with similar charge-to-mass ratios cannot be separated from existing beam profile monitors (BPMs) in nuclear facilities in which low-energy radioactive ions are produced due to nuclear fusion reactions. In this study, we developed a BPM using a microchannel plate and a charge-coupled device to differentiate the beam profiles of alpha-decaying radioactive isotopes from other ions (reaction products) produced in a nuclear reaction. This BPM was employed to optimize the low-energy radioactive francium ion (Fr+) beam developed at the Cyclotron and Radioisotope Center (CYRIC), Tohoku University, for electron permanent electric dipole moment (e-EDM) search experiments using Fr atoms. We demonstrated the performance of the BPM by separating the Fr+ beam from other reaction products produced during the nuclear fusion reaction of an oxygen (18O) beam and gold (197Au) target. However, as the mass of Au is close to that of Fr, separating the ions of these elements using a mass filter is a challenge, and a dominant number of Au+ renders the Fr+ beam profile invisible when using a typical BPM. Therefore, by employing the new BPM, we could successfully observe the Fr+ beam and other ion beams distinctly by measuring the alpha decay of Fr isotopes. This novel technique to monitor the alpha-emitting radioactive beam covers a broad range of lifetimes, for example, from approximately 1 s to 10 min, and can be implemented for other alpha-emitter beams utilized for medical applications.
138 - Qing Lin , Yuehuan Wei , Jie Bao 2013
Dual phase Xenon Time Projection Chambers (XeTPCs) are being used by several experiments as a promising technique for direct detection of dark matter. We report on the design and performance of a small 3-D sensitive dual phase XeTPC. The position res olution is 2 mm in the center of detector, limited by the hole size of the mesh at the proportional scintillation region. An energy resolution of 1.6%({sigma} /E) for 662 keV gamma rays is achieved by combining the ionization and scintillation signals at a drift field of 0.5 kV/cm. This represents the best energy resolution achieved among liquid xenon detectors. The energy resolution is only slightly dependent on drift field. Better than 2% energy resolution ({sigma} /E) for 662 keV gamma rays can be achieved for drift fields between 100 V/cm and 2 kV/cm. With high position and energy resolutions, a dual phase XeTPC has also potential applications in surveys for neutrinoless double-beta decay and in gamma ray imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا