ﻻ يوجد ملخص باللغة العربية
The lack of a new physics signal thus far at the Large Hadron Collider motivates us to consider how to look for challenging final states, with large Standard Model backgrounds and subtle kinematic features, such as cascade decays with compressed spectra. Adopting a benchmark SUSY-like decay topology with a four-body final state proceeding through a sequence of two-body decays via intermediate resonances, we focus our attention on the kinematic variable $Delta_{4}$ which previously has been used to parameterize the boundary of the allowed four-body phase space. We highlight the advantages of using $Delta_{4}$ as a discovery variable, and present an analysis suggesting that the pairing of $Delta_{4}$ with another invariant mass variable leads to a significant improvement over more conventional variable choices and techniques.
We present a preliminary study on the possibility to search for massive long-lived electrically charged particles at the MoEDAL detector. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta-)stable electrically
We revisit the method of kinematical endpoints for particle mass determination, applied to the popular SUSY decay chain squark -> neutralino -> slepton -> LSP. We analyze the uniqueness of the solutions for the mass spectrum in terms of the measured
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolutio
$tau$ leptons emitted in cascade decays of supersymmetric particles are polarized. The polarization may be exploited to determine spin and mixing properties of the neutralinos and stau particles involved.
We present the prospects of an angular analysis of the $Lambda_b to Lambda(1520)ell^+ell^-$ decay. Using the expected yield in the current dataset collected at the LHCb experiment, as well as the foreseen ones after the LHCb upgrades, sensitivity stu