ﻻ يوجد ملخص باللغة العربية
The PAU Survey (PAUS) is an innovative photometric survey with 40 narrow bands at the William Herschel Telescope (WHT). The narrow bands are spaced at 100AA intervals covering the range 4500AA to 8500AA and, in combination with standard broad bands, enable excellent redshift precision. This paper describes the technique, galaxy templates and additional photometric calibration used to determine early photometric redshifts from PAUS. Using BCNz2, a new photometric redshift code developed for this purpose, we characterise the photometric redshift performance using PAUS data on the COSMOS field. Comparison to secure spectra from zCOSMOS DR3 shows that PAUS achieves $sigma_{68} /(1+z) = 0.0037$ to $i_{mathrm{AB}} < 22.5$ when selecting the best 50% of the sources based on a photometric redshift quality cut. Furthermore, a higher photo-z precision ($sigma_{68}/(1+z) sim 0.001$) is obtained for a bright and high quality selection, which is driven by the identification of emission lines. We conclude that PAUS meets its design goals, opening up a hitherto uncharted regime of deep, wide, and dense galaxy survey with precise redshifts that will provide unique insights into the formation, evolution and clustering of galaxies, as well as their intrinsic alignments.
We present -- and make publicly available -- accurate and precise photometric redshifts in the ACS footprint from the COSMOS field for objects with $i_{mathrm{AB}}leq 23$. The redshifts are computed using a combination of narrow band photometry from
In this paper we introduce the textsc{Deepz} deep learning photometric redshift (photo-$z$) code. As a test case, we apply the code to the PAU survey (PAUS) data in the COSMOS field. textsc{Deepz} reduces the $sigma_{68}$ scatter statistic by 50% at
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the qu
MiniJPAS is a ~1 deg^2 imaging survey of the AEGIS field in 60 bands, performed to demonstrate the scientific potential of the upcoming JPAS survey. Full coverage of the 3800-9100 AA range with 54 narrow and 6 broad optical filters allow for extremel
We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 object