ﻻ يوجد ملخص باللغة العربية
Structured light enables the characterization of chirality of optically small nanoparticles by taking advantage of the helicity maximization concept recently introduced in[1]. By referring to fields with nonzero helicity density as chiral fields, we first investigate the properties of two chiral optical beams in obtaining helicity density localization and maximization requirements. The investigated beams include circularly polarized Gaussian beams and also an optical beam properly composed by a combination of a radially and an azi-muthally polarized beam. To acquire further enhancement and localization of helicity density beyond the diffraction limit, we also study chiral fields at the vicinity of a spherical dielectric nanoantenna and demon-strate that the helicity density around such a nanoantenna is a superposition of helicity density of the illu-minating field, scattered field, and an interference helicity term. Moreover, we illustrate when the nanoan-tenna is illuminated by a proper combination of azimuthal and radially polarized beams, the scattered nearfields satisfy the helicity maximization conditions beyond the diffraction limit. The application of the concept of helicity maximization to nanoantennas and generating optimally chiral nearfield result in helici-ty enhancement which is of great advantage in areas like detection of nanoscale chiral samples, microsco-py, and optical manipulation of chiral nanoparticles.
We propose the concept of helicity maximization applicable to structured light and obtain a universal rela-tion for the maximum of helicity density at a given field energy density. We further demonstrate that us-ing structured light with maximized he
Optimally-chiral electromagnetic fields with maximized helicity density, recently introduced in [1], enable chirality characterization of optically small nanoparticles. Here, we demonstrate a technique to obtain optimally-chiral nearfields that leads
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this r
Chiral edge modes in photonic topological insulators host great potential to realize slow-light waveguides with topological protection. Increasing the winding of the chiral edge mode around the Brillouin zone can lead to broadband topological slow li
The nonlinear coherent interaction of light with the dispersive and Kerr-type third-order susceptibility medium containing optical impurity atoms or semiconductor quantum dots is considered. Using the generalized perturbation reduction method, the no