ترغب بنشر مسار تعليمي؟ اضغط هنا

Nash Equilibria in the Response Strategy of Correlated Games

118   0   0.0 ( 0 )
 نشر من قبل Adriana Correia
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In nature and society problems arise when different interests are difficult to reconcile, which are modeled in game theory. While most applications assume uncorrelated games, a more detailed modeling is necessary to consider the correlations that influence the decisions of the players. The current theory for correlated games, however, enforces the players to obey the instructions from a third party or correlation device to reach equilibrium, but this cannot be achieved for all initial correlations. We extend here the existing framework of correlated games and find that there are other interesting and previously unknown Nash equilibria that make use of correlations to obtain the best payoff. This is achieved by allowing the players the freedom to follow or not to follow the suggestions of the correlation device. By assigning independent probabilities to follow every possible suggestion, the players engage in a response game that turns out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and mixed-strategy solutions. We determine the Nash equilibria for all possible correlated Snowdrift games, which we find to be describable by Ising Models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players.



قيم البحث

اقرأ أيضاً

178 - Patricia Bouyer 2015
We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into winning strategies (for some objective that depends on the preference relations of the players in the original game). We use that transformation to design algorithms for computing Nash equilibria in finite games, which in most cases have optimal worst-case complexity, for large classes of preference relations. This includes the purely qualitative framework, where each player has a single omega-regular objective that she wants to satisfy, but also the larger class of semi-quantitative objectives, where each player has several omega-regular objectives equipped with a preorder (for instance, a player may want to satisfy all her objectives, or to maximise the number of objectives that she achieves.)
We study a static game played by a finite number of agents, in which agents are assigned independent and identically distributed random types and each agent minimizes its objective function by choosing from a set of admissible actions that depends on its type. The game is anonymous in the sense that the objective function of each agent depends on the actions of other agents only through the empirical distribution of their type-action pairs. We study the asymptotic behavior of Nash equilibria, as the number of agents tends to infinity, first by deriving laws of large numbers characterizes almost sure limit points of Nash equilibria in terms of so-called Cournot-Nash equilibria of an associated nonatomic game. Our main results are large deviation principles that characterize the probability of rare Nash equilibria and associated conditional limit theorems describing the behavior of equilibria conditioned on a rare event. The results cover situations when neither the finite-player game nor the associated nonatomic game has a unique equilibrium. In addition, we study the asymptotic behavior of the price of anarchy, complementing existing worst-case bounds with new probabilistic bounds in the context of congestion games, which are used to model traffic routing in networks.
Model-free learning for multi-agent stochastic games is an active area of research. Existing reinforcement learning algorithms, however, are often restricted to zero-sum games, and are applicable only in small state-action spaces or other simplified settings. Here, we develop a new data efficient Deep-Q-learning methodology for model-free learning of Nash equilibria for general-sum stochastic games. The algorithm uses a local linear-quadratic expansion of the stochastic game, which leads to analytically solvable optimal actions. The expansion is parametrized by deep neural networks to give it sufficient flexibility to learn the environment without the need to experience all state-action pairs. We study symmetry properties of the algorithm stemming from label-invariant stochastic games and as a proof of concept, apply our algorithm to learning optimal trading strategies in competitive electronic markets.
We present the concept of a Generalized Feedback Nash Equilibrium (GFNE) in dynamic games, extending the Feedback Nash Equilibrium concept to games in which players are subject to state and input constraints. We formalize necessary and sufficient con ditions for (local) GFNE solutions at the trajectory level, which enable the development of efficient numerical methods for their computation. Specifically, we propose a Newton-style method for finding game trajectories which satisfy the necessary conditions, which can then be checked against the sufficiency conditions. We show that the evaluation of the necessary conditions in general requires computing a series of nested, implicitly-defined derivatives, which quickly becomes intractable. To this end, we introduce an approximation to the necessary conditions which is amenable to efficient evaluation, and in turn, computation of solutions. We term the solutions to the approximate necessary conditions Generalized Feedback Quasi Nash Equilibria (GFQNE), and we introduce numerical methods for their computation. In particular, we develop a Sequential Linear-Quadratic Game approach, in which a locally approximate LQ game is solved at each iteration. The development of this method relies on the ability to compute a GFNE to inequality- and equality-constrained LQ games, and therefore specific methods for the solution of these special cases are developed in detail. We demonstrate the effectiveness of the proposed solution approach on a dynamic game arising in an autonomous driving application.
We study the problem of checking for the existence of constrained pure Nash equilibria in a subclass of polymatrix games defined on weighted directed graphs. The payoff of a player is defined as the sum of nonnegative rational weights on incoming edg es from players who picked the same strategy augmented by a fixed integer bonus for picking a given strategy. These games capture the idea of coordination within a local neighbourhood in the absence of globally common strategies. We study the decision problem of checking whether a given set of strategy choices for a subset of the players is consistent with some pure Nash equilibrium or, alternatively, with all pure Nash equilibria. We identify the most natural tractable cases and show NP or coNP-completness of these problems already for unweighted DAGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا