ﻻ يوجد ملخص باللغة العربية
We investigate the host galaxies of compact objects merging in the local Universe, by combining the results of binary population-synthesis simulations with the Illustris cosmological box. Double neutron stars (DNSs) merging in the local Universe tend to form in massive galaxies (with stellar mass $>10^{9}$ M$_odot$) and to merge in the same galaxy where they formed, with a short delay time between the formation of the progenitor stars and the DNS merger. In contrast, double black holes (DBHs) and black hole $-$ neutron star binaries (BHNSs) form preferentially in small galaxies (with stellar mass $<10^{10}$ M$_odot$) and merge either in small or in larger galaxies, with a long delay time. This result is an effect of metallicity: merging DBHs and BHNSs form preferentially from metal-poor progenitors ($Zleq{}0.1$ Z$_odot$), which are more common in high-redshift galaxies and in local dwarf galaxies, whereas merging DNSs are only mildly sensitive to progenitors metallicity and thus are more abundant in massive galaxies nowadays. The mass range of DNS hosts we predict in this work is consistent with the mass range of short gamma-ray burst hosts.
We explore the different formation channels of merging double compact objects (DCOs: BH-BH/BH-NS/NS-NS) that went through a ultraluminous X-ray phase (ULX: X-ray sources with apparent luminosity exceeding $10^{39}$ erg s$^{-1}$). There are many evolu
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-
We present the largest publicly available catalog of interacting dwarf galaxies. It includes 177 nearby merging dwarf galaxies of stellar mass M$_{*}$ $<$ 10$^{10}$M$_{sun}$ and redshifts z $<$ 0.02. These galaxies are selected by visual inspection o
We present the localization and host galaxies of one repeating and two apparently non-repeating Fast Radio Bursts. FRB20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at $z=0.3304$. FRB20191228A,
We measure the projected cross-correlation between low redshift (z < 0.5) far-IR selected galaxies in the SDP field of the Herschel-ATLAS (H-ATLAS) survey and optically selected galaxies from the Galaxy and Mass Assembly (GAMA) redshift survey. In or