ﻻ يوجد ملخص باللغة العربية
We report a thorough study of Y$_{0.7}$La$_{0.3}$VO$_3$ single crystals by measuring magnetic properties, specific heat, thermal conductivity, x-ray and neutron diffraction with the motivation of revealing the lattice response to the spin-orbital entanglement in textit{R}VO$_3$. Upon cooling from room temperature, the orbitally disordered paramagnetic state changes around T*$sim$220,K to spin-orbital entangled state which is then followed by a transition at T$_N$=116,K to C-type orbital ordered (OO) and G-type antiferromagnetic ordered (AF) ground state. In the temperature interval T$_N<T<T^*$, the VO$_{6/2}$ octahedra have two comparable in-plane V-O bonds which are longer than the out-of-plane V-O1 bond. This local structural distortion supports the spin-orbital entanglement of partially filled and degenerate yz/zx orbitals. However, this distortion is incompatible with the steric octahedral site distortion intrinsic to orthorhombic perovskites. Their competition induces a second order transition from the spin-orbital entangled state to C-OO/G-AF ground state where the long range OO suppresses the spin-orbital entanglement. Our analysis suggests that the spin-orbital entangled state and G-OO are comparable in energy and compete with each other. Rare earth site disorder favors the spin-orbital entanglement rather than a cooperative Jahn-Teller distortion. The results also indicate for LaVO$_3$ a C-OO/G-AF state in T$_t$,$leq$,T,$leq$T$_N$ and an orbital flipping transition at T$_t$.
Structure with orbital degeneracy is unstable toward spontaneous distortion. Such orbital correlation usually has a much higher energy scale than spins, and therefore, magnetic transition takes place at a much lower temperature, almost independently
We study optical excitations across the Mott gap in the multi-orbital Mott-Hubbard insulators RVO3. The multi-peak structure observed in the optical conductivity can be described consistently in terms of the different 3d^3 multiplets or upper Hubbard
We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs$_{2}$AgF$_{4}$. After self-consistently determining the harmonic and anharmonic Jahn-Teller d
Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interactio
The realization of Kitaevs honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential r