ﻻ يوجد ملخص باللغة العربية
Urban traffic scenarios often require a high degree of cooperation between traffic participants to ensure safety and efficiency. Observing the behavior of others, humans infer whether or not others are cooperating. This work aims to extend the capabilities of automated vehicles, enabling them to cooperate implicitly in heterogeneous environments. Continuous actions allow for arbitrary trajectories and hence are applicable to a much wider class of problems than existing cooperative approaches with discrete action spaces. Based on cooperative modeling of other agents, Monte Carlo Tree Search (MCTS) in conjunction with Decoupled-UCT evaluates the action-values of each agent in a cooperative and decentralized way, respecting the interdependence of actions among traffic participants. The extension to continuous action spaces is addressed by incorporating novel MCTS-specific enhancements for efficient search space exploration. The proposed algorithm is evaluated under different scenarios, showing that the algorithm is able to achieve effective cooperative planning and generate solutions egocentric planning fails to identify.
Todays automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous envi
Efficient driving in urban traffic scenarios requires foresight. The observation of other traffic participants and the inference of their possible next actions depending on the own action is considered cooperative prediction and planning. Humans are
Many of the strongest game playing programs use a combination of Monte Carlo tree search (MCTS) and deep neural networks (DNN), where the DNNs are used as policy or value evaluators. Given a limited budget, such as online playing or during the self-p
The most widely used methods for toolpath planning in fused deposition 3D printing slice the input model into successive 2D layers in order to construct the toolpath. Unfortunately slicing-based methods can incur a substantial amount of wasted motion
We address the problem of visually guided rearrangement planning with many movable objects, i.e., finding a sequence of actions to move a set of objects from an initial arrangement to a desired one, while relying on visual inputs coming from an RGB c