ﻻ يوجد ملخص باللغة العربية
We numerically investigate the characteristics of chaos evolution during wave packet spreading in two typical one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation model. Completing previous investigations cite{SGF13} we verify that chaotic dynamics is slowing down both for the so-called `weak and `strong chaos dynamical regimes encountered in these systems, without showing any signs of a crossover to regular dynamics. The value of the finite-time maximum Lyapunov exponent $Lambda$ decays in time $t$ as $Lambda propto t^{alpha_{Lambda}}$, with $alpha_{Lambda}$ being different from the $alpha_{Lambda}=-1$ value observed in cases of regular motion. In particular, $alpha_{Lambda}approx -0.25$ (weak chaos) and $alpha_{Lambda}approx -0.3$ (strong chaos) for both models, indicating the dynamical differences of the two regimes and the generality of the underlying chaotic mechanisms. The spatiotemporal evolution of the deviation vector associated with $Lambda$ reveals the meandering of chaotic seeds inside the wave packet, which is needed for obtaining the chaotization of the lattices excited part.
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quanti
We study the chaotic behavior of multidimensional Hamiltonian systems in the presence of nonlinearity and disorder. It is known that any localized initial excitation in a large enough linear disordered system spreads for a finite amount of time and t
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [EPL {bf 91}, 3
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro