ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles investigation of nanopore sequencing using variable voltage bias on graphene-based nanoribbons

240   0   0.0 ( 0 )
 نشر من قبل Jason Haraldsen Ph.D
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we examine the mechanism of nanopore-based DNA sequencing using a voltage bias across a graphene nanoribbon. Using density functional theory and a non-equilibrium Greens function approach, we determine the transmission spectra and current profile for adenine, guanine, cytosine, thymine, and uracil as a function of bias voltage in an energy minimized configuration. Utilizing the transmission current, we provide a general methodology for the development of a three nanopore graphene-based device that can be used to distinguish between the various nucleobases for DNA/RNA sequencing. From our analysis, we deduce that it is possible to use different transverse currents across a multi-nanopore device to differentiate between nucleobases using various voltages of 0.5, 1.3, and 1.6 V. Overall, our goal is to improve nanopore design to further DNA/RNA nucleobase sequencing and biomolecule identification techniques.



قيم البحث

اقرأ أيضاً

We examine the possibility of using graphene nanoribbons (GNRs) with directly substituted chromium atoms as spintronic device. Using density functional theory, we simulate a voltage bias across a constructed GNR in a device setup, where a magnetic di mer has been substituted into the lattice. Through this first principles approach, we calculate the electronic and magnetic properties as a function of Hubbard U, voltage, and magnetic configuration. By calculating of the total energy of each magnetic configuration, we determine that initial antiferromagnetic ground state flips to a ferromagnetic state with applied bias. Mapping this transition point to the calculated conductance for the system reveals that there is a distinct change in conductance through the GNR, which indicates the possibility of a spin valve. We also show that this corresponds to a distinct change in the induced magnetization within the graphene.
Edge-contacted superconductor-graphene-superconductor Josephson junction have been utilized to realize topological superconductivity, which have shown superconducting signatures in the quantum Hall regime. We perform the first-principles calculations to interpret electronic couplings at the superconductor-graphene edge contacts by investigating various aspects in hybridization of molybdenum d orbitals and graphene $pi$ orbitals. We also reveal that interfacial oxygen defects play an important role in determining the doping type of graphene near the interface.
168 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
143 - Dino Novko 2020
Exploring low-loss two-dimensional plasmon modes is considered central for achieving light manipulation at the nanoscale and applications in plasmonic science and technology. In this context, pump-probe spectroscopy is a powerful tool for investigati ng these collective modes and the corresponding energy transfer processes. Here, I present a first-principles study on non-equilibrium Dirac plasmon in graphene, wherein damping channels under ultrafast conditions are still not fully explored. The laser-induced blueshift of plasmon energy is explained in terms of thermal increase of the electron-hole pair concentration in the intraband channel. Interestingly, while damping pathways of the equilibrium graphene plasmon are entirely ruled by scatterings with acoustic phonons, the photoinduced plasmon predominantly transfers its energy to the strongly coupled hot optical phonons, which explains the experimentally-observed tenfold increase of the plasmon linewidth. The present study paves the way for an in-depth theoretical comprehension of plasmon temporal dynamics in novel two-dimensional systems and heterostructures.
In this work we study thermoelectric properties of graphene nanoribbons with side-attached organic molecules. By adopting a single-band tight binding Hamiltonian and the Greens function formalism, we calculated the transmission and Seebeck coefficien ts for different hybrid systems. The corresponding thermopower profiles exhibit a series of sharp peaks at the eigenenergies of the isolated molecule. We study the effects of the temperature on the thermoelectric response, and we consider random configurations of molecule distributions, in different disorder regimes. The main characteristics of the thermopower are not destroyed under temperature and disorder, indicating the robustness of the system as a proposed molecular thermo-sensor device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا