ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Identification of X-ray Sources from the 14-Year INTEGRAL All-Sky Survey

255   0   0.0 ( 0 )
 نشر من قبل Dmitri Karasev
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of our optical identifications of several hard X-ray sources from the INTEGRAL all-sky survey obtained over 14 years of observations. Having improved the positions of these objects in the sky with the X-ray telescope (XRT) of the Swift observatory and the XMM-Newton observatory, we have identified their counterparts using optical and infrared sky survey data. We have obtained optical spectra for more than half of the objects from our sample with the RTT-150 and AZT-33IK telescopes, which have allowed us to establish the nature of the objects and to measure their redshifts. Six sources are shown to be extragalactic in origin and to belong to Seyfert 1 and 2 galaxies (IGR J01017+6519, IGR J08215-1320, IGR J08321-1808, IGR J16494-1740, IGR J17098-2344, IGR J17422-2108); we have failed to draw definitive conclusions about the nature of four more objects (IGR J11299-6557, IGR J14417-5533, IGR J18141-1823, IGR J18544+0839), but, judging by circumstantial evidence, they are most likely also extragalactic objects. For one more object (IGR J18044-1829) no unequivocal identification has been made.



قيم البحث

اقرأ أيضاً

We present the results of our optical identifications of four hard X-ray sources from the Swift all-sky survey. We obtained optical spectra for each of the program objects with the 6-m BTA telescope (Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz), which allowed their nature to be established. Two sources (SWIFT J2237.2+6324} and SWIFT J2341.0+7645) are shown to belong to the class of cataclysmic variables (suspected polars or intermediate polars). The measured emission line width turns out to be fairly large (FWHM ~ 15-25 A), suggesting the presence of extended, rapidly rotating (v~400-600 km/s) accretion disks in the systems. Apart from line broadening, we have detected a change in the positions of the line centroids for SWIFT J2341.0+7645, which is most likely attributable to the orbital motion of the white dwarf in the binary system. The other two program objects (SWIFT J0003.3+2737 and SWIFT J0113.8+2515) are extragalactic in origin: the first is a Seyfert 2 galaxy and the second is a blazar at redshift z=1.594. Apart from the optical spectra, we provide the X-ray spectra for all sources in the 0.6-10 keV energy band obtained from XRT/Swift data.
This paper is the second in a series devoted to the hard X-ray (17-60 keV) whole sky survey performed by the INTEGRAL observatory over seven years. Here we present a catalog of detected sources which includes 521 objects, 449 of which exceed a 5 sigm a detection threshold on the time-averaged map of the sky, and 53 were detected in various subsamples of exposures. Among the identified sources with known and suspected nature, 262 are Galactic (101 low-mass X-ray binaries, 95 high-mass X-ray binaries, 36 cataclysmic variables, and 30 of other types) and 219 are extragalactic, including 214 active galactic nuclei (AGNs), 4 galaxy clusters, and galaxy ESO 389-G 002. The extragalactic (|b|>5 deg) and Galactic (|b|<5 deg) persistently detected source samples are of high identification completeness (respectively ~96% and ~94%) and valuable for population studies.
We present a first catalog of sources detected by the Mikhail Pavlinsky ART-XC telescope aboard the SRG observatory in the 4-12 keV energy band during its on-going all-sky survey. The catalog comprises 867 sources detected on the combined map of the first two 6-month scans of the sky (Dec. 2019 - Dec. 2020) - ART-XC sky surveys 1 and 2, or ARTSS12. The achieved sensitivity to point sources varies between ~5x10-12 erg/s/cm2 near the Ecliptic plane and better than 10-12 erg/s/cm2 (4-12 keV) near the Ecliptic poles, and the typical localization accuracy is ~15 arcsec. Among the 750 sources of known or suspected origin in the catalog, 56% are extragalactic (mostly active galactic nuclei (AGN) and clusters of galaxies) and the rest are Galactic (mostly cataclysmic variables (CVs) and low- and high-mass X-ray binaries). For 116 sources ART-XC has detected X-rays for the first time. Although the majority of these (~80) are expected to be spurious (for the adopted detection threshold), there can be a significant number of newly discovered astrophysical objects. We have started a program of optical follow-up observations of the new and previously unidentified X-ray sources, which has already led to the identification of several AGN and CVs. With the SRG all-sky survey planned to continue for a total of 4 years, we can expect the ART-XC survey in the 4-12 keV band to significantly surpass the previous surveys carried out in similar (medium X-ray) energy bands in terms of the combination of angular resolution, sensitivity, and sky coverage.
This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvemen ts are related to the suppression of systematic effects which strongly limit sensitivity in the region of the Galactic Plane (GP), especially in the crowded field of the Galactic Center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic Ridge X-ray Emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7E-12 erg/s/cm2 ~0.26 mCrab in the 17-60 keV band at a 5 sigma detection level. The survey covers 90% of the sky down to the flux limit of 6.2E-11 erg/s/cm2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6E-12 erg/s/cm2 (~0.60 mCrab).
258 - M.Revnivtsev 2008
We have optically identified a recently discovered INTEGRAL source, IGR J08390--4833, with a cataclysmic variable, i.e. an accreting white dwarf in a binary system. The spectrum exhibits a rising blue continuum together with Balmer and HeII emission lines. Analysis of the light curve of the source shows clear presence of intrinsic variability on a time scale of the order of an hour, although we do not claim that this variability is periodic. Therefore we are not yet able to classify the object into a specific CV subclass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا