ترغب بنشر مسار تعليمي؟ اضغط هنا

Transforming Question Answering Datasets Into Natural Language Inference Datasets

194   0   0.0 ( 0 )
 نشر من قبل Dorottya Demszky
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.



قيم البحث

اقرأ أيضاً

Biomedical question answering (QA) is a challenging task due to the scarcity of data and the requirement of domain expertise. Pre-trained language models have been used to address these issues. Recently, learning relationships between sentence pairs has been proved to improve performance in general QA. In this paper, we focus on applying BioBERT to transfer the knowledge of natural language inference (NLI) to biomedical QA. We observe that BioBERT trained on the NLI dataset obtains better performance on Yes/No (+5.59%), Factoid (+0.53%), List type (+13.58%) questions compared to performance obtained in a previous challenge (BioASQ 7B Phase B). We present a sequential transfer learning method that significantly performed well in the 8th BioASQ Challenge (Phase B). In sequential transfer learning, the order in which tasks are fine-tuned is important. We measure an unanswerable rate of the extractive QA setting when the formats of factoid and list type questions are converted to the format of the Stanford Question Answering Dataset (SQuAD).
89 - Akshay Kumar Gupta 2017
Visual question answering (or VQA) is a new and exciting problem that combines natural language processing and computer vision techniques. We present a survey of the various datasets and models that have been used to tackle this task. The first part of the survey details the various datasets for VQA and compares them along some common factors. The second part of this survey details the different approaches for VQA, classified into four types: non-deep learning models, deep learning models without attention, deep learning models with attention, and other models which do not fit into the first three. Finally, we compare the performances of these approaches and provide some directions for future work.
While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method t hat replaces a segment of the input text with its translation in another language. XLDA enhances performance of all 14 tested languages of the cross-lingual natural language inference (XNLI) benchmark. With improvements of up to $4.8%$, training with XLDA achieves state-of-the-art performance for Greek, Turkish, and Urdu. XLDA is in contrast to, and performs markedly better than, a more naive approach that aggregates examples in various languages in a way that each example is solely in one language. On the SQuAD question answering task, we see that XLDA provides a $1.0%$ performance increase on the English evaluation set. Comprehensive experiments suggest that most languages are effective as cross-lingual augmentors, that XLDA is robust to a wide range of translation quality, and that XLDA is even more effective for randomly initialized models than for pretrained models.
201 - Daniel Khashabi 2019
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce t he Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQANs multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا