ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH survey and Gaia DR2: dissecting the stellar discs phase space by age, action, chemistry and location

61   0   0.0 ( 0 )
 نشر من قبل Joss Bland-Hawthorn
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the second data releases of the ESA Gaia astrometric survey and the high-resolution GALAH spectroscopic survey to analyse the structure of our Galaxys disc components. With GALAH, we separate the alpha-rich and alpha-poor discs (with respect to Fe), which are superposed in both position and velocity space, and examine their distributions in action space. We study the distribution of stars in the zV_z phase plane, for both V_phi and V_R, and recover the remarkable phase spiral discovered by Gaia. We identify the anticipated quadrupole signature in zV_z of a tilted velocity ellipsoid for stars above and below the Galactic plane. By connecting our work with earlier studies, we show that the phase spiral is likely to extend well beyond the narrow solar neighbourhood cylinder in which it was found. The phase spiral is a signature of corrugated waves that propagate through the disc, and the associated non-equilibrium phase mixing. The radially asymmetric distribution of stars involved in the phase spiral reveals that the corrugation, which is mostly confined to the alpha-poor disc, grows in z-amplitude with increasing radius. We present new simulations of tidal disturbance of the Galactic disc by the Sagittarius (Sgr) dwarf. The effect on the zV_z phase plane lasts >2 Gyr but a subsequent disc crossing wipes out the coherent structure. We find that the phase spiral was excited < 0.5 Gyr ago by an object like Sgr with total mass 3 x 10^10 Msun (stripped down from 5 x 10^10 Msun when it first entered the halo) passing through the plane.



قيم البحث

اقرأ أيضاً

Gaia DR2 has revealed new small-scale and large-scale patterns in the phase-space distribution of stars in the Milky Way. In cylindrical Galactic coordinates $(R,phi,z)$, ridge-like structures can be seen in the vphiR{} plane and asymmetric arch-like structures in the vphivR{} plane. We show that the ridges are also clearly present when the third dimension of the vphiR{} plane is represented by $langle z rangle$, $langle V_z rangle$, $langle V_R rangle$, $langle$[Fe/H]$rangle$ and $langle[alpha/{rm Fe}]rangle$. The maps suggest that stars along the ridges lie preferentially close to the Galactic midplane ($|z|<0.2$ kpc), and have metallicity and $alpha$ elemental abundance similar to that of the Sun. We show that phase mixing of disrupting spiral arms can generate both the ridges and the arches. It also generates discrete groupings in orbital energy $-$ the ridges and arches are simply surfaces of constant energy. We identify 8 distinct ridges in the gaia{} data: six of them have constant energy while two have constant angular momentum. Given that the signature is strongest for stars close to the plane, the presence of ridges in $langle z rangle$ and $langle V_z rangle$ suggests a coupling between planar and vertical directions. We demonstrate, using N-body simulations that such coupling can be generated both in isolated discs and in discs perturbed by an orbiting satellite like the Sagittarius dwarf galaxy.
Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Usin g 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select $sim 24000$ old stars (${tau > 10}$ Gyr, with uncertainties $lesssim 15%$) within 2 kpc from the Sun (full sample). A cross-match with APOGEE-DR16 ($sim 1000$ stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius ($r_mathrm{per}$) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution $N$-body+Smooth Particle Hydrodynamics simulation, we demonstrate that one peak, at $r_mathrm{per}approx 7.1$ kpc, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, $sim 1/2$ ($sim 1/3$) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.
We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of $7.5 < R,(mathrm{kpc}) < 9.0$, using a sample of $sim 12,000$ intermediate-mass (FGK) turnoff stars observed with the RAdial Velocity Experi ment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young ($0 < tau < 3$ Gyr) and old ($8 < tau < 13$ Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius ($partial {V_{rm R}}/partial R$) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For $partial {V_{phi}}/partial R$, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.
Using a single N-body simulation ($N=0.14times 10^9$) we explore the formation, evolution and spatial variation of the phase-space spirals similar to those recently discovered by Antoja et al. in the Milky Way disk, with Gaia DR2. For the first time in the literature, we use a self-consistent N-body simulation of an isolated Milky Way-type galaxy to show that the phase-space spirals develop naturally from vertical oscillations driven by the buckling of the stellar bar. We claim that the physical mechanism standing behind the observed incomplete phase-space mixing process can be internal and not necessarily due to the perturbation induced by a massive satellite. In our model, the bending oscillations propagate outwards and produce axisymmetric variations of the mean vertical coordinate and of the vertical velocity component. As a consequence, the phase-space wrapping results in the formation of patterns with various morphology across the disk, depending on the bar orientation, distance to the galactic center and time elapsed since the bar buckling. Once bending waves appear, they are supported for a long time via disk self-gravity. The underlying physical mechanism implies the link between in-plane and vertical motion that leads directly to phase-space structures whose amplitude and shape are in remarkable agreement with those of the phase-space spirals observed in the Milky Way disk. In our isolated galaxy simulation, phase-space spirals are still distinguishable, at the solar neighbourhood, 3 Gyr after the buckling phase. The long-lived character of the phase-space spirals generated by the bar buckling instability cast doubts on the timing argument used so far to get back at the time of the onset of the perturbation: phase-space spirals may have been caused by perturbations originated several Gyrs ago, and not as recent as suggested so far.
Since the advent of $Gaia$ astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, $Gaia$-Sausage-Enceladus (GSE), appears to be an early building block given its v irial mass $> 10^{10},mathrm{M_odot}$ at infall ($zsim1-3$). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-$alpha$ abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including $30 < sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} < 55$, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean $sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} = 26_{-14}^{+9}$. We find only $(29pm1)%$ of the GSE stars within the clean dynamical selection region. We thus discuss chemodynamic selections (such as eccentricity and upper limits on [Na/Fe]).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا