ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified formal framework for developmental andevolutionary change in gene regulatory network models

117   0   0.0 ( 0 )
 نشر من قبل Enrico Borriello Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two most fundamental processes describing change in biology, development and evolu-tion, occur over drastically different timescales, difficult to reconcile within a unified framework. Development involves temporal sequences of cell states controlled by hierarchies of regulatory structures. It occurs over the lifetime of a single individual, and is associated to the gene expression level change of a given genotype. Evolution, by contrast entails genotypic change through the acquisition/loss of genes and changes in the network topology of interactions among genes. It involves the emergence of new, environmentally selected phenotypes over the lifetimes of many individuals. Here we present a model of regulatory network evolution that accounts for both timescales. We extend the framework of Boolean models of gene regulatory networks (GRN)-currently only applicable to describing development to include evolutionary processes. As opposed to one-to-one maps to specific attractors, we identify the phenotypes of the cells as the relevant macrostates of the GRN. A phenotype may now correspond to multiple attractors, and its formal definition no longer requires a fixed size for the genotype. This opens the possibility for a quantitative study of the phenotypic change of a genotype, which is itself changing over evolutionary timescales. We show how the realization of specific phenotypes can be controlled by gene duplication events (used here as an archetypal evolutionary event able to change the genotype), and how successive events of gene duplication lead to new regulatory structures via selection. At the same time, we show that our generalized framework does not inhibit network controllability and the possibility for network control theory to describe epigenetic signaling during development.



قيم البحث

اقرأ أيضاً

85 - Yipei Guo , Ariel Amir 2020
Homeostasis of protein concentrations in cells is crucial for their proper functioning, and this requires concentrations (at their steady-state levels) to be stable to fluctuations. Since gene expression is regulated by proteins such as transcription factors (TFs), the full set of proteins within the cell constitutes a large system of interacting components. Here, we explore factors affecting the stability of this system by coupling the dynamics of mRNAs and protein concentrations in a growing cell. We find that it is possible for protein concentrations to become unstable if the regulation strengths or system size becomes too large, and that other global structural features of the networks can dramatically enhance the stability of the system. In particular, given the same number of proteins, TFs, number of interactions, and regulation strengths, a network that resembles a bipartite graph with a lower fraction of interactions that target TFs has a higher chance of being stable. By scrambling the $textit{E. coli.}$ transcription network, we find that the randomized network with the same number of regulatory interactions is much more likely to be unstable than the real network. These findings suggest that constraints imposed by system stability could have played a role in shaping the existing regulatory network during the evolutionary process. We also find that contrary to what one might expect from random matrix theory and what has been argued in the literature, the degradation rate of mRNA does not affect whether the system is stable.
The topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situ ation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly. In this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different levels. In doing so, we identify the most relevant factors affecting the validity of previous findings, highlighting important caveats to future prokaryotic TRNs topological analysis.
Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural networks (RNN) models boosted the interpr etability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow to hierarchically distinguish different architectures of the GRN. We show that the GRNs respond differently to the addition of noise in the prediction by the RNN and we relate the noise response to the analysis of the attention mechanism. In conclusion, this work provides a a way to understand and exploit the attention mechanism of RNN and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.
204 - Yoshihisa Tanaka 2020
The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispen sable for an understanding of how SARS-CoV-2 behaves in human host cells. However, little is known about the systematic molecular mechanisms involved in the effect of SARS-CoV-2 infection on human host cells. Here, we have presented gene-to-gene regulatory networks in response to SARS-CoV-2 using a Bayesian network. We examined the dynamic changes of the SARS-CoV-2-purturbated networks established by our proposed framework for gene network analysis, revealing that interferon signaling gradually switches to the subsequent inflammatory-cytokine signaling cascades. Furthermore, we have succeeded in capturing a COVID-19 patient-specific network in which transduction of these signalings is coincidently induced. This enabled us to explore local regulatory systems influenced by SARS-CoV-2 in host cells more precisely at an individual level. Our panel of network analyses has provided new insight into SARS-CoV-2 research from the perspective of cellular systems.
The sequence of amino acids in a protein is believed to determine its native state structure, which in turn is related to the functionality of the protein. In addition, information pertaining to evolutionary relationships is contained in homologous s equences. One powerful method for inferring these sequence attributes is through comparison of a query sequence with reference sequences that contain significant homology and whose structure, function, and/or evolutionary relationships are already known. In spite of decades of concerted work, there is no simple framework for deducing structure, function, and evolutionary (SF&E) relationships directly from sequence information alone, especially when the pair-wise identity is less than a threshold figure ~25% [1,2]. However, recent research has shown that sequence identity as low as 8% is sufficient to yield common structure/function relationships and sequence identities as large as 88% may yet result in distinct structure and function [3,4]. Starting with a basic premise that protein sequence encodes information about SF&E, one might ask how one could tease out these measures in an unbiased manner. Here we present a unified framework for inferring SF&E from sequence information using a knowledge-based approach which generates phylogenetic profiles in an unbiased manner. We illustrate the power of phylogenetic profiles generated using the Gestalt Domain Detection Algorithm Basic Local Alignment Tool (GDDA-BLAST) to derive structural domains, functional annotation, and evolutionary relationships for a host of ion-channels and human proteins of unknown function. These data are in excellent accord with published data and new experiments. Our results suggest that there is a wealth of previously unexplored information in protein sequence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا