ﻻ يوجد ملخص باللغة العربية
We develop a version of cluster algebra extending the ring of Laurent polynomials by adding Grassmann variables. These algebras can be described in terms of `extended quivers which are oriented hypergraphs. We describe mutations of such objects and define a corresponding commutative superalgebra. Our construction includes the notion of weighted quivers that has already appeared in different contexts. This paper is a step of understanding the notion of cluster superalgebra
Richard Eager and Sebastian Franco introduced a change of basis transformation on the F-polynomials of Fomin and Zelevinsky, corresponding to rewriting them in the basis given by fractional brane charges rather than quiver gauge groups. This transfor
We introduce the notion of a lower bound cluster algebra generated by projective cluster variables as a polynomial ring over the initial cluster variables and the so-called projective cluster variables. We show that under an acyclicity assumption, th
The goal of this paper is to define the Grassmann integral in terms of a limit of a sum around a well-defined contour so that Grassmann numbers gain geometric meaning rather than symbols. The unusual rescaling properties of the integration of an expo
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a opera
We describe an infinite family of non-Plucker cluster variables inside the double Bruhat cell cluster algebra defined by Berenstein, Fomin, and Zelevinsky. These cluster variables occur in a family of subalgebras of the double Bruhat cell cluster alg