ترغب بنشر مسار تعليمي؟ اضغط هنا

MITS: the Multi-Imaging Transient Spectrograph for SOXS

73   0   0.0 ( 0 )
 نشر من قبل Adam Rubin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument.



قيم البحث

اقرأ أيضاً

An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spe ctroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the 4C design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.
We present the NIR spectrograph of the Son Of XShooter (SOXS) instrument for the ESO-NTT telescope at La Silla (Chile). SOXS is a R~4,500 mean resolution spectrograph, with a simultaneously coverage from about 0.35 to 2.00 {mu}m. It will be mounted a t the Nasmyth focus of the NTT. The two UV-VIS-NIR wavelength ranges will be covered by two separated arms. The NIR spectrograph is a fully cryogenic echelle-dispersed spectrograph, working in the range 0.80-2.00 {mu}m, equipped with an Hawaii H2RG IR array from Teledyne, working at 40 K. The spectrograph will be cooled down to about 150 K, to lower the thermal background, and equipped with a thermal filter to block any thermal radiation above 2.0 {mu}m. In this poster we will show the main characteristics of the instrument along with the expected performances at the telescope.
SOXS (Son Of X-Shooter) is a single object spectrograph, characterized by offering a wide simultaneous spectral coverage from U- to H-band, built by an international consortium for the 3.6-m ESO New Technology Telescope at the La Silla Observatory, i n the Southern part of the Chilean Atacama Desert. The consortium is focussed on a clear scientific goal: the spectrograph will observe all kind of transient and variable sources discovered by different surveys with a highly flexible schedule, updated daily, based on the Target of Opportunity concept. It will provide a key spectroscopic partner to any kind of imaging survey, becoming one of the premier transient follow-up instruments in the Southern hemisphere. SOXS will study a mixture of transients encompassing all distance scales and branches of astronomy, including fast alerts (such as gamma-ray bursts and gravitational waves), mid-term alerts (such as supernovae and X-ray transients), and fixed-time events (such as the close-by passage of a minor planet or exoplanets). It will also have the scope to observe active galactic nuclei and blazars, tidal disruption events, fast radio bursts, and more. Besides of the consortium programs on guaranteed time, the instrument is offered to the ESO community for any kind of astrophysical target. The project has passed the Final Design Review and is currently in manufacturing and integration phase. This paper describes the development status of the project.
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ~ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
Binospec is a high throughput, 370 to 1000 nm, imaging spectrograph that addresses two adjacent 8 by 15 fields of view. Binospec was commissioned in late 2017 at the f/5 focus of the 6.5m MMT and is now available to all MMT observers. Aperture masks cut from stainless steel with a laser cutter are used to define the entrance apertures that range from 15 long slits to hundreds of 2 slitlets. System throughputs, including the MMTs mirrors and the f/5 wide-field corrector peak at ~30%. Three reflection gratings, duplicated for the two beams, provide resolutions ($lambda$/$Delta lambda$) between 1300 and $>$5000 with a 1 wide slit. Two through-the-mask guiders are used for target acquisition, mask alignment, guiding, and precision offsets. A full-time Shack-Hartmann wave front sensor allows continuous adjustment of primary mirror support forces, telescope collimation and focus. Active flexure control maintains spectrograph alignment and focus under varying gravity and thermal conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا