ﻻ يوجد ملخص باللغة العربية
Let $P$ be a simple polygon with $n$ vertices. For any two points in $P$, the geodesic distance between them is the length of the shortest path that connects them among all paths contained in $P$. Given a set $S$ of $m$ sites being a subset of the vertices of $P$, we present a randomized algorithm to compute the geodesic farthest-point Voronoi diagram of $S$ in $P$ running in expected $O(n + m)$ time. That is, a partition of $P$ into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic distance. In particular, this algorithm can be extended to run in expected $O(n + mlog m)$ time when $S$ is an arbitrary set of $m$ sites contained in $P$, thereby solving the open problem posed by Mitchell in Chapter 27 of the Handbook of Computational Geometry.
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric.
Given a set $S$ of $m$ point sites in a simple polygon $P$ of $n$ vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for $S$ in $P$. It is known that the problem has an $Omega(n+mlog m)$ time lower bound. Previ
We study the geodesic Voronoi diagram of a set $S$ of $n$ linearly moving sites inside a static simple polygon $P$ with $m$ vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then
Sampling, grouping, and aggregation are three important components in the multi-scale analysis of point clouds. In this paper, we present a novel data-driven sampler learning strategy for point-wise analysis tasks. Unlike the widely used sampling tec
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added