ﻻ يوجد ملخص باللغة العربية
A new collective behavior of resonant synchronization is discovered and the ability to retrieve information from brain memory is proposed based on this mechanism. We use modified Kuramoto phase oscillator to simulate the dynamics of a single neuron in self-oscillation state, and investigate the collective responses of a neural network, which is composed of $N$ globally coupled Kuramoto oscillators, to the external stimulus signals in a critical state just below the synchronization threshold of Kuramoto model. The input signals at different driving frequencies, which are used to denote different neural stimuli, can drive the coupled oscillators into different synchronized groups locked to the same effective frequencies and recover different synchronized patterns emerged from their collective dynamics closely related to the predetermined frequency distributions of the oscillators (memory). This model is used to explain how brain stores and retrieves information by the synchronized patterns emerging in the neural network stimulated by the external inputs.
We show that an introduction of a phase parameter ($alpha$), with $0 le alpha le pi/2$, in the interlayer coupling terms of multiplex networks of Kuramoto oscillators can induce explosive synchronization (ES) in the multiplexed layers. Along with the
We examine analytically and numerically a variant of the stochastic Kuramoto model for phase oscillators coupled on a general network. Two populations of phased oscillators are considered, labelled `Blue and `Red, each with their respective networks,
In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on
Synchronization in networks of coupled oscillators is known to be largely determined by the spectral and symmetry properties of the interaction network. Here we leverage this relation to study a class of networks for which the threshold coupling stre
In this paper, the synchronization in a hyper-network of coupled dynamical systems is investigated for the first time. An evolving hyper-network model is proposed for better describing some complex systems. A concept of joint degree is introduced, an