ﻻ يوجد ملخص باللغة العربية
We present an analytical and numerical solution of the calculation of the transition moments for the exact semi-classical light-matter interaction for wavefunctions expanded in a Gaussian basis. By a simple manipulation we show that the exact semi-classical light-matter interaction of a plane wave can be compared to a Fourier transformation of a Gaussian where analytical recursive formulas are well known and hence making the difficulty in the implementation of the exact semi-classical light-matter interaction comparable to the transition dipole. Since the evaluation of the analytical expression involves a new Gaussian we instead have chosen to evaluate the integrals using a standard Gau{ss}-Hermite quadrature since this is faster. A brief discussion of the numerical advantages of the exact semi-classical light-matter interaction in comparison to the multipole expansion along with the unphysical interpretation of the multipole expansion is discussed. Numerical examples on [CuCl$_4$]$^{2-}$ to show that the usual features of the multipole expansion is immediately visible also for the exact semi-classical light-matter interaction and that this can be used to distinguish between symmetries. Calculation on [FeCl$_4$]$^{1-}$ is presented to demonstrate the better numerical stability with respect to the choice of basis set in comparison to the multipole expansion and finally Fe-O-Fe to show origin independence is a given for the exact operator. The implementation is freely available in OpenMolcas.
The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically improvable selected configuration interaction plus perturbation theory method capable of giving essentially exact energies for larger systems
Accurate and efficient quantum control in the presence of constraints and decoherence is a requirement and a challenge in quantum information processing. Shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays
We present a detailed discussion of our novel diagrammatic coupled cluster Monte Carlo (diagCCMC) [Scott et al. J. Phys. Chem. Lett. 2019, 10, 925]. The diagCCMC algorithm performs an imaginary-time propagation of the similarity-transformed coupled c
The sorption of radionuclides by graphene oxides synthesized by different methods was studied through a combination of batch experiments with characterization by microscopic and spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS),
Many particle physics models for dark matter self-interactions - motivated to address long-standing challenges to the collisionless cold dark matter paradigm - fall within the semi-classical regime, with interaction potentials that are long-range com