ﻻ يوجد ملخص باللغة العربية
Automatic Differentiation (AD) allows to determine exactly the Taylor series of any function truncated at any order. Here we propose to use AD techniques for Monte Carlo data analysis. We discuss how to estimate errors of a general function of measured observables in different Monte Carlo simulations. Our proposal combines the $Gamma$-method with Automatic differentiation, allowing exact error propagation in arbitrary observables, even those defined via iterative algorithms. The case of special interest where we estimate the error in fit parameters is discussed in detail. We also present a freely available fortran reference implementation of the ideas discussed in this work.
We present ADerrors.jl, a software for linear error propagation and analysis of Monte Carlo data. Although the focus is in data analysis in Lattice QCD, where estimates of the observables have to be computed from Monte Carlo samples, the software als
Ultracold neutrons (UCN) with kinetic energies up to 300 neV can be stored in material or magnetic confinements for hundreds of seconds. This makes them a very useful tool for probing fundamental symmetries of nature, by searching for charge-parity v
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standa
Different methods for extracting resonance parameters from Euclidean lattice field theory are tested. Monte Carlo simulations of the O(4) non-linear sigma model are used to generate energy spectra in a range of different volumes both below and above
Tensor renormalization group (TRG) constitutes an important methodology for accurate simulations of strongly correlated lattice models. Facilitated by the automatic differentiation technique widely used in deep learning, we propose a uniform framewor