ترغب بنشر مسار تعليمي؟ اضغط هنا

Compositional Diversity Among Primitive Asteroids

228   0   0.0 ( 0 )
 نشر من قبل Juan Sanchez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopic observations from the ultraviolet to the mid-infrared have revealed new and diagnostic differences among primitive asteroids. We review the spectral characteristics of these asteroids and their inferred compositional and physical properties. Primitive asteroids throughout the belt show carbon-rich compounds, varying degrees of aqueous alteration and even surface ice; recent observations provide significant new constraints on composition, thermal inertia, and other surface properties. New mid-infrared connections between primitive asteroids and interplanetary dust particles indicate that the latter sample a larger fraction of main belt asteroids than meteorites. Links with the composition of comets are consistent with a proposed continuum between primitive asteroids and comets. Two sample-return missions, OSIRIS-REx and Hayabusa 2, will visit primitive near-Earth asteroids (NEAs). Most spacecraft-accessible NEAs originate in the inner asteroid belt, which contains several primitive asteroid families and a background of primitive asteroids outside these families. Initial results from these families offer a tantalizing preview of the properties expected in the NEAs they produce. So far, primitive asteroids in the inner belt fall into two spectral groups. The first group includes the Polana-Eulalia families, which show considerable spectral homogeneity in spite of their dynamical and collisional complexity. In contrast, the Erigone and Sulamitis families are spectrally diverse and most of their members show clear 0.7 microns hydration features. The two sample-return targets (101955) Bennu and (162173) Ryugu, most likely originated in the Polana family.



قيم البحث

اقرأ أيضاً

We present near-infrared (0.78-2.45 {mu}m) reflectance spectra for nine middle and outer main belt (a > 2.5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent sp ectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R- type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system. The 1- and 2-{mu}m band centers of all objects, determined using the Modified Gaussian Model (MGM), were compared to those of 47 Vestoids and fifteen HED meteorites of known composition. The HEDs enabled us to determine formulas relating Band 1 and Band 2 centers to pyroxene ferrosilite (Fs) compositions. Using these formulas we present the most comprehensive compositional analysis to date of middle and outer belt basaltic asteroids. We also conduct a careful error analysis of the MGM-derived band centers for implementation in future analyses. The six outer belt V- and R-type asteroids show more dispersion in parameter space than the Vestoids, reflecting greater compositional diversity than Vesta and its associated bodies. The objects analyzed have Fs numbers which are, on average, between five and ten molar percent lower than those of the Vestoids; however, identification and compositional analysis of additional outer belt basaltic asteroids would help to confirm or refute this result. Given the gradient in oxidation state which existed within the solar nebula, these results tentatively suggest that these objects formed at either a different time or location than 4 Vesta.
Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the sur faces of some of these asteroids including Ceres. Here we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater th an 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.
This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. The aqueous alteration is particularly important for unraveling the processes occurring during the earliest times of the Solar System history, as it can give information both on the asteroids thermal evolution and on the localization of water sources in the asteroid belt. We present new spectral observations in the visible region of 80 asteroids belonging to the primitive classes C, G, F, B and P. We combine the present observations with the visible spectra of asteroids available in the literature for a total of 600 primitive main belt asteroids. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the F, B, C, and G asteroids. Around 50% of the observed C-type asteroids show absorption features in the vis. range due to hydrated silicates, implying that more than 70% of them will have a 3 $mu$m absorption band and thus hydrated minerals on their surfaces. The process dominates in primitive asteroids located between 2.3 and 3.1 AU, that is at smaller heliocentric distances than previously suggested. The aqueous alteration process dominates in the 50--240 km sized primitive asteroids, while it is less effective for bodies smaller than 50 km. No correlation is found between the aqueous alteration process and the asteroids albedo or orbital elements. Comparing the $sim$ 0.7 $mu$m band parameters of hydrated silicates and CM2 carbonaceous chondrites, we see that the band center of meteorites is at longer wavelengths than that of asteroids. This difference on center positions may be attributed to different minerals abundances, and to the fact that CM2 available on Earth might not be representative of the whole aqueous altered asteroids population.
122 - Pierre Beck , Olivier Poch 2021
The Sloan Digital Sky Survey provides colors for more than 100 000 moving objects, among which around 10 000 have albedos determined. Here we combined colors and albedo in order to perform a cluster analysis on the small bodies population, and identi fy a C-cluster, a group of asteroid related to C-type as defined in earlier work. Members of this C-cluster are in fair agreement with the color boundaries of B and C-type defined in DeMeo and Carry (2013). We then compare colors of C-cluster asteroids to those of carbonaceous chondrites powders, while taking into account the effect of phase angle. We show that only CM chondrites have colors in the range of C-cluster asteroids, CO, CR and CV chondrites being significantly redder. Also, CM chondrites powders are on average slightly redder than the average C-cluster. The colors of C-cluster members are further investigated by looking at color variations as a function of asteroid diameter. We observe that the visible slope becomes bluer with decreasing asteroids diameter, and a transition seems to be present around 20 km. We discuss the origin of this variation and, if not related to a bias in the dataset - analysis, we conclude that it is related to the surface texture of the objects, smaller objects being covered by rocks, while larger objects are covered by a particulate surface. The blueing is interpreted by an increased contribution of the first reflection in the case of rock-dominated surfaces, which can scatter light in a Rayleigh-like manner. We do not have unambiguous evidence of space weathering within the C-cluster based on this analysis, however the generally bluer nature of C-cluster objects compared to CM chondrites could be to some extent related to space weathering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا