ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity induced variation in spin-orbit angles as derived from Rossiter-McLaughlin measurements

75   0   0.0 ( 0 )
 نشر من قبل Mahmoudreza Oshagh
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most powerful methods used to estimate sky-projected spin-orbit angles of exoplanetary systems is through a spectroscopic transit observation known as the Rossiter-McLaughlin (RM) effect. So far mostly single RM observations have been used to estimate the spin-orbit angle, and thus there have been no studies regarding the variation of estimated spin-orbit angle from transit to transit. Stellar activity can alter the shape of photometric transit light curves and in a similar way they can deform the RM signal. In this paper we discuss several RM observations, obtained using the HARPS spectrograph, of known transiting planets that all transit extremely active stars, and by analyzing them individually we assess the variation in the estimated spin-orbit angle. Our results reveal that the estimated spin-orbit angle can vary significantly (up to 42 degrees) from transit to transit, due to variation in the configuration of stellar active regions over different nights. This finding is almost two times larger than the expected variation predicted from simulations. We could not identify any meaningful correlation between the variation of estimated spin-orbit angles and the stellar magnetic activity indicators. We also investigated two possible approaches to mitigate the stellar activity influence on RM observations. The first strategy was based on obtaining several RM observations and folding them to reduce the stellar activity noise. Our results demonstrated that this is a feasible and robust way to overcome this issue. The second approach is based on acquiring simultaneous high-precision short-cadence photometric transit light curves using TRAPPIST/SPECULOOS telescopes, which provide more information about the stellar active regions properties and allow a better RM modeling.



قيم البحث

اقرأ أيضاً

Mostly multiband photometric transit observations have been used so far to retrieve broadband transmission spectra of transiting exoplanets in order to study their atmosphere. An alternative method has been proposed and has only been used once to rec over transmission spectra using chromatic Rossiter-McLaughlin observations. Stellar activity has been shown to potentially imitate narrow and broadband features in the transmission spectra retrieved from multiband photometric observations; however, there has been no study regarding the influence of stellar activity on the retrieved transmission spectra through chromatic Rossiter-McLaughlin. In this study with the modified SOAP3.0 tool, we consider different types of stellar activity features (spots and plages), and we generated a large number of realistic chromatic Rossiter-McLaughlin curves for different types of planets and stars. We were then able to retrieve their transmission spectra to evaluate the impact of stellar activity on them. We find that chromatic Rossiter-McLaughlin observations are also not immune to stellar activity, which can mimic broadband features, such as Rayleigh scattering slope, in their retrieved transmission spectra. We also find that the influence is independent of the planet radius, orbital orientations, orbital period, and stellar rotation rate. However, more general simulations demonstrate that the probability of mimicking strong broadband features is lower than 25% and that can be mitigated by combining several Rossiter-McLaughlin observations obtained during several transits.
165 - E. K. Simpson 2009
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the ef fect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (lambda) is small and consistent with zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically-gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6 +2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. (2009) designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7 +1.4/-1.3 km/s).
348 - E. K. Simpson 2010
We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars rotation axes. The planets WASP-24 b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: {lambda} = -4.7 pm 4.0{deg}, {lambda} = 15 + 33{deg}/-43{deg} and {lambda} = -9.7 +9.0{deg}/-7.7{deg}, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, {lambda} = -79 +4.5{deg}/-4.3{deg}. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.
AU Mic~b is a Neptune size planet on a 8.47-day orbit around the nearest pre-main sequence ($sim$20 Myr) star to the Sun, the bright (V=8.81) M dwarf AU Mic. The planet was preliminary detected in Doppler radial velocity time series and recently conf irmed to be transiting with data from the TESS mission. AU Mic~b is likely to be cooling and contracting and might be accompanied by a second, more massive planet, in an outer orbit. Here, we present the observations of the transit of AU Mic~b using ESPRESSO on the VLT. We obtained a high-resolution time series of spectra to measure the Rossiter-McLaughlin effect and constrain the spin-orbit alignment of the star and planet, and simultaneously attempt to retrieve the planets atmospheric transmission spectrum. These observations allow us to study for the first time the early phases of the dynamical evolution of young systems. We apply different methodologies to derive the spin-orbit angle of AU Mic~b, and all of them retrieve values consistent with the planet being aligned with the rotation plane of the star. We determine a conservative spin-orbit angle $lambda$ value of $-2.96^{+10.44}_{-10.30}$, indicative that the formation and migration of the planets of the AU Mic system occurred within the disk. Unfortunately, and despite the large SNR of our measurements, the degree of stellar activity prevented us from detecting any features from the planetary atmosphere. In fact, our results suggest that transmission spectroscopy for recently formed planets around active young stars is going to remain very challenging, if at all possible, for the near future.
WASP-121b is one of the most studied Ultra-hot Jupiters: many recent analyses of its atmosphere report interesting features at different wavelength ranges. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrogra ph ESPRESSO at VLT in 1-telescope mode, and one partial transit taken during the commissioning of the instrument in 4-telescope mode. We investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. By analysing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter-McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052$pm$0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum. We detected significant absorption in the transmission spectrum for Na, H, K, Li, CaII, Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of $sim$0.2% detected at the 6$sigma$ level. With the cross-correlation technique we confirmed the presence of FeI, FeII, CrI and VI. H$alpha$ and CaII are present up to very high altitudes in the atmosphere ($sim$1.44 Rp and $sim$2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally-locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا