ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter Transfer Extreme Learning Machine based on Projective Model

92   0   0.0 ( 0 )
 نشر من قبل Chen Chao
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years, transfer learning has attracted much attention in the community of machine learning. In this paper, we mainly focus on the tasks of parameter transfer under the framework of extreme learning machine (ELM). Unlike the existing parameter transfer approaches, which incorporate the source model information into the target by regularizing the di erence between the source and target domain parameters, an intuitively appealing projective-model is proposed to bridge the source and target model parameters. Specifically, we formulate the parameter transfer in the ELM networks by the means of parameter projection, and train the model by optimizing the projection matrix and classifier parameters jointly. Further more, the `L2,1-norm structured sparsity penalty is imposed on the source domain parameters, which encourages the joint feature selection and parameter transfer. To evaluate the e ectiveness of the proposed method, comprehensive experiments on several commonly used domain adaptation datasets are presented. The results show that the proposed method significantly outperforms the non-transfer ELM networks and other classical transfer learning methods.



قيم البحث

اقرأ أيضاً

If our models are used in new or unexpected cases, do we know if they will make fair predictions? Previously, researchers developed ways to debias a model for a single problem domain. However, this is often not how models are trained and used in prac tice. For example, labels and demographics (sensitive attributes) are often hard to observe, resulting in auxiliary or synthetic data to be used for training, and proxies of the sensitive attribute to be used for evaluation of fairness. A model trained for one setting may be picked up and used in many others, particularly as is common with pre-training and cloud APIs. Despite the pervasiveness of these complexities, remarkably little work in the fairness literature has theoretically examined these issues. We frame all of these settings as domain adaptation problems: how can we use what we have learned in a source domain to debias in a new target domain, without directly debiasing on the target domain as if it is a completely new problem? We offer new theoretical guarantees of improving fairness across domains, and offer a modeling approach to transfer to data-sparse target domains. We give empirical results validating the theory and showing that these modeling approaches can improve fairness metrics with less data.
In this paper, we propose an AdaBoost-assisted extreme learning machine for efficient online sequential classification (AOS-ELM). In order to achieve better accuracy in online sequential learning scenarios, we utilize the cost-sensitive algorithm-Ada Boost, which diversifying the weak classifiers, and adding the forgetting mechanism, which stabilizing the performance during the training procedure. Hence, AOS-ELM adapts better to sequentially arrived data compared with other voting based methods. The experiment results show AOS-ELM can achieve 94.41% accuracy on MNIST dataset, which is the theoretical accuracy bound performed by an original batch learning algorithm, AdaBoost-ELM. Moreover, with the forgetting mechanism, the standard deviation of accuracy during the online sequential learning process is reduced to 8.26x.
We introduce an efficient algorithmic framework for model selection in online learning, also known as parameter-free online learning. Departing from previous work, which has focused on highly structured function classes such as nested balls in Hilber t space, we propose a generic meta-algorithm framework that achieves online model selection oracle inequalities under minimal structural assumptions. We give the first computationally efficient parameter-free algorithms that work in arbitrary Banach spaces under mild smoothness assumptions; previous results applied only to Hilbert spaces. We further derive new oracle inequalities for matrix classes, non-nested convex sets, and $mathbb{R}^{d}$ with generic regularizers. Finally, we generalize these results by providing oracle inequalities for arbitrary non-linear classes in the online supervised learning model. These results are all derived through a unified meta-algorithm scheme using a novel multi-scale algorithm for prediction with expert advice based on random playout, which may be of independent interest.
A common approach for compressing NLP networks is to encode the embedding layer as a matrix $Ainmathbb{R}^{ntimes d}$, compute its rank-$j$ approximation $A_j$ via SVD, and then factor $A_j$ into a pair of matrices that correspond to smaller fully-co nnected layers to replace the original embedding layer. Geometrically, the rows of $A$ represent points in $mathbb{R}^d$, and the rows of $A_j$ represent their projections onto the $j$-dimensional subspace that minimizes the sum of squared distances (errors) to the points. In practice, these rows of $A$ may be spread around $k>1$ subspaces, so factoring $A$ based on a single subspace may lead to large errors that turn into large drops in accuracy. Inspired by emph{projective clustering} from computational geometry, we suggest replacing this subspace by a set of $k$ subspaces, each of dimension $j$, that minimizes the sum of squared distances over every point (row in $A$) to its emph{closest} subspace. Based on this approach, we provide a novel architecture that replaces the original embedding layer by a set of $k$ small layers that operate in parallel and are then recombined with a single fully-connected layer. Extensive experimental results on the GLUE benchmark yield networks that are both more accurate and smaller compared to the standard matrix factorization (SVD). For example, we further compress DistilBERT by reducing the size of the embedding layer by $40%$ while incurring only a $0.5%$ average drop in accuracy over all nine GLUE tasks, compared to a $2.8%$ drop using the existing SVD approach. On RoBERTa we achieve $43%$ compression of the embedding layer with less than a $0.8%$ average drop in accuracy as compared to a $3%$ drop previously. Open code for reproducing and extending our results is provided.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduc ed for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا