ترغب بنشر مسار تعليمي؟ اضغط هنا

How to model fake news

82   0   0.0 ( 0 )
 نشر من قبل Dorje C. Brody Professor
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past three years it has become evident that fake news is a danger to democracy. However, until now there has been no clear understanding of how to define fake news, much less how to model it. This paper addresses both these issues. A definition of fake news is given, and two approaches for the modelling of fake news and its impact in elections and referendums are introduced. The first approach, based on the idea of a representative voter, is shown to be suitable to obtain a qualitative understanding of phenomena associated with fake news at a macroscopic level. The second approach, based on the idea of an election microstructure, describes the collective behaviour of the electorate by modelling the preferences of individual voters. It is shown through a simulation study that the mere knowledge that pieces of fake news may be in circulation goes a long way towards mitigating the impact of fake news.



قيم البحث

اقرأ أيضاً

The current public sense of anxiety in dealing with disinformation as manifested by so-called fake news is acutely displayed by the reaction to recent events prompted by a belief in conspiracies among certain groups. A model to deal with disinformati on is proposed; it is based on a demonstration of the analogous behavior of disinformation to that of wave phenomena. Two criteria form the basis to combat the deleterious effects of disinformation: the use of a refractive medium based on skepticism as the default mode, and polarization as a filter mechanism to analyze its merits based on evidence. Critical thinking is enhanced since the first one tackles the pernicious effect of the confirmation bias, and the second the tendency towards attribution, both of which undermine our efforts to think and act rationally. The benefits of such a strategy include an epistemic reformulation of disinformation as an independently existing phenomenon, that removes its negative connotations when perceived as being possessed by groups or individuals.
Automatically identifying fake news from the Internet is a challenging problem in deception detection tasks. Online news is modified constantly during its propagation, e.g., malicious users distort the original truth and make up fake news. However, t he continuous evolution process would generate unprecedented fake news and cheat the original model. We present the Fake News Evolution (FNE) dataset: a new dataset tracking the fake news evolution process. Our dataset is composed of 950 paired data, each of which consists of articles representing the three significant phases of the evolution process, which are the truth, the fake news, and the evolved fake news. We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
Amid the pandemic COVID-19, the world is facing unprecedented infodemic with the proliferation of both fake and real information. Considering the problematic consequences that the COVID-19 fake-news have brought, the scientific community has put effo rt to tackle it. To contribute to this fight against the infodemic, we aim to achieve a robust model for the COVID-19 fake-news detection task proposed at CONSTRAINT 2021 (FakeNews-19) by taking two separate approaches: 1) fine-tuning transformers based language models with robust loss functions and 2) removing harmful training instances through influence calculation. We further evaluate the robustness of our models by evaluating on different COVID-19 misinformation test set (Tweets-19) to understand model generalization ability. With the first approach, we achieve 98.13% for weighted F1 score (W-F1) for the shared task, whereas 38.18% W-F1 on the Tweets-19 highest. On the contrary, by performing influence data cleansing, our model with 99% cleansing percentage can achieve 54.33% W-F1 score on Tweets-19 with a trade-off. By evaluating our models on two COVID-19 fake-news test sets, we suggest the importance of model generalization ability in this task to step forward to tackle the COVID-19 fake-news problem in online social media platforms.
People are increasingly consuming news curated by machine learning (ML) systems. Motivated by studies on algorithmic bias, this paper explores which recommendations of an algorithmic news curation system users trust and how this trust is affected by untrustworthy news stories like fake news. In a study with 82 vocational school students with a background in IT, we found that users are able to provide trust ratings that distinguish trustworthy recommendations of quality news stories from untrustworthy recommendations. However, a single untrustworthy news story combined with four trustworthy news stories is rated similarly as five trustworthy news stories. The results could be a first indication that untrustworthy news stories benefit from appearing in a trustworthy context. The results also show the limitations of users abilities to rate the recommendations of a news curation system. We discuss the implications of this for the user experience of interactive machine learning systems.
The topic of fake news has drawn attention both from the public and the academic communities. Such misinformation has the potential of affecting public opinion, providing an opportunity for malicious parties to manipulate the outcomes of public event s such as elections. Because such high stakes are at play, automatically detecting fake news is an important, yet challenging problem that is not yet well understood. Nevertheless, there are three generally agreed upon characteristics of fake news: the text of an article, the user response it receives, and the source users promoting it. Existing work has largely focused on tailoring solutions to one particular characteristic which has limited their success and generality. In this work, we propose a model that combines all three characteristics for a more accurate and automated prediction. Specifically, we incorporate the behavior of both parties, users and articles, and the group behavior of users who propagate fake news. Motivated by the three characteristics, we propose a model called CSI which is composed of three modules: Capture, Score, and Integrate. The first module is based on the response and text; it uses a Recurrent Neural Network to capture the temporal pattern of user activity on a given article. The second module learns the source characteristic based on the behavior of users, and the two are integrated with the third module to classify an article as fake or not. Experimental analysis on real-world data demonstrates that CSI achieves higher accuracy than existing models, and extracts meaningful latent representations of both users and articles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا