ترغب بنشر مسار تعليمي؟ اضغط هنا

Global energy fluxes in fully-developed turbulent channels with flow control

154   0   0.0 ( 0 )
 نشر من قبل Maurizio Quadrio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct Numerical Simulations (DNS) of different control strategies are performed at Constant Power Input (CPI), so that at statistical equilibrium each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.



قيم البحث

اقرأ أيضاً

The concept of inverse statistics in turbulence has attracted much attention in the recent years. It is argued that the scaling exponents of the direct structure functions and the inverse structure functions satisfy an inversion formula. This proposi tion has already been verified by numerical data using the shell model. However, no direct evidence was reported for experimental three dimensional turbulence. We propose to test the inversion formula using experimental data of three dimensional fully developed turbulence by considering the energy dissipation rates in stead of the usual efforts on the structure functions. The moments of the exit distances are shown to exhibit nice multifractality. The inversion formula between the direct and inverse exponents is then verified.
We investigate the conditional vorticity budget of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. The Coherent Vorticity Extraction based on orthogonal wavelets allows to decompose the vorticity field into coherent and incoherent contributions, of which the latter are noise-like. The impact of the vortex structures observed in fully developed turbulence on statistical balance equations is quantified considering the conditional vorticity budget. The connection between the basic structures present in the flow and their statistical implications is thereby assessed. The results are compared to those obtained for large- and small-scale contributions using a Fourier decomposition, which reveals pronounced differences.
122 - S.I. Vainshtein 2003
Using high Reynolds number experimental data, we search for most dissipative, most intense structures. These structures possess a scaling predicted by log-Poisson model for the dissipation field $epsilon_r$. The probability distribution function for the exponents $alpha$, $epsilon_rsim e^{alpha a}$, has been constructed, and compared with Poisson distribution. These new experimental data suggest that the most intense structures have co-dimension less than 2. The log-Poisson statistics is compared with log-binomial which follows from the random $beta$-model.
Turbulent plane Poiseuille and Couette flows share the same geometry, but produce their flow rate owing to different external drivers, pressure gradient and shear respectively. By looking at integral energy fluxes, we pose and answer the question of which flow performs better at creating flow rate. We define a flow {em efficiency}, that quantifies the fraction of power used to produce flow rate instead of being wasted as a turbulent overhead; {em effectiveness}, instead, describes the amount of flow rate produced by a given power. The work by Gatti emph{et al.} (emph{J. Fluid Mech.} vol.857, 2018, pp. 345--373), where the constant power input (CPI) concept was developed to compare turbulent Poiseuille flows with drag reduction, is here extended to compare different flows. By decomposing the mean velocity field into a laminar contribution and a deviation, analytical expressions are derived which are the energy-flux equivalents of the FIK identity. These concepts are applied to literature data supplemented by a new set of direct numerical simulations, to find that Couette flows are less efficient but more effective than Poiseuille ones. The reason is traced to the more effective laminar component of Couette flows, which compensates for their higher turbulent activity. It is also observed that, when the fluctuating fields of the two flows are fed with the same total power fraction, Couette flows dissipate a smaller percentage of it via turbulent dissipation. A decomposition of the fluctuating field into large and small scales explains this feature: Couette flows develop stronger large-scale structures, which alter the mean flow while contributing less significantly to dissipation.
We revisit the issue of Lagrangian irreversibility in the context of recent results [Xu, et al., PNAS, 111, 7558 (2014)] on flight-crash events in turbulent flows and show how extreme events in the Eulerian dissipation statistics are related to the s tatistics of power-fluctuations for tracer trajectories. Surprisingly, we find that particle trajectories in intense dissipation zones are dominated by energy gains sharper than energy losses, contrary to flight-crashes, through a pressure-gradient driven take-off phenomenon. Our conclusions are rationalised by analysing data from simulations of three-dimensional intermittent turbulence, as well as from non-intermittent decimated flows. Lagrangian irreversibility is found to persist even in the latter case, wherein fluctuations of the dissipation rate are shown to be relatively mild and to follow probability distribution functions with exponential tails.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا